Advertisement
Advertisement

Indicator

Free Access

Pay per View

Partial Free Access

Contact Person

Dr. Elinor Switzer

Managing Editor

Phone: +49 (0)711 - 2 29 87 63
Fax: +49 (0)711 - 2 29 87 65
send an Email


Archive

Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: Insights from experimental models

Journal: Thrombosis and Haemostasis
ISSN: 0340-6245
Topic:

Stem cells in cardiovascular biology and medicine

DOI: http://dx.doi.org/10.1160/TH10-03-0189
Issue: 2010: 104/1 (July) pp. 1-190
Pages: 30-38

Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: Insights from experimental models

C.-W. Kong (1), F. G. Akar (2), R. A. Li (1, 2)

(1) Stem Cell & Regenerative Medicine Program, Heart, Brain, Hormone & Healthy Aging Research Center, and Department of Medicine, University of Hong Kong, Hong Kong, China; (2) Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York, USA

Summary

Heart diseases have been a major cause of death worldwide, including developed countries. Indeed, loss of non-regenerative, terminally differentiated cardiomyocytes (CMs) due to aging or diseases is irreversible. Current therapeutic regimes are palliative in nature, and in the case of end-stage heart failure, transplantation remains the last resort. However, this option is significantly hampered by a severe shortage of donor cells and organs. Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency to differentiate into all cell types. More recently, direct reprogramming of adult somatic cells to become pluripotent hES-like cells (a.k.a. induced pluripotent stem cells or iPSCs) has been achieved. The availability of hESCs and iPSCs, and their successful differentiation into genuine human heart cells have enabled researchers to gain novel insights into the early development of the human heart as well as to pursue the revolutionary paradigm of heart regeneration. Here we review our current knowledge of hESC-/iPSC-derived CMs in the context of two fundamental operating principles of CMs (i.e. electrophysiology and Ca2+-handling), the resultant limitations and potential solutions in relation to their translation into clinical (bioartificial pacemaker, myocardial repair) and other applications (e.g. as models for human heart disease and cardiotoxicity screening).

Keywords

induced pluripotent stem cells, Human embryonic stem cells, cardiomyocytes

DOI

http://dx.doi.org/10.1160/TH10-03-0189

You may also be interested in...

1.
Ansätze für eine neurorestaurative Behandlung des Morbus Parkinson

A. Storch (1, 2), M. Löhle (1)

Nervenheilkunde 2010 29 6: 372-377