Advertisement

Contact Person

Dr. Elinor Switzer

Managing Editor

Phone: +49 (0)711 - 2 29 87 63
Fax: +49 (0)711 - 2 29 87 65
send an Email


Archive

Update on lipids, inflammation and atherothrombosis

Journal: Thrombosis and Haemostasis
ISSN: 0340-6245
Topic:

Contemporary issues in atherothrombosis

DOI: http://dx.doi.org/10.1160/THS10-11-0717
Issue: 2011: 105/Supplement 1
Pages: S34-S42

  1. Loscalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 2001; 88: 756-762. DOI:10.1161/hh0801.089861
  2. Vidal F, Colome C, Martinez-Gonzalez J, et al. Atherogenic concentrations of native low-density lipoproteins down-regulate nitric-oxide-synthase mRNA and protein levels in endothelial cells. Eur J Biochem 1998; 252: 378-384. DOI:10.1046/j.1432-1327.1998.2520378.x
  3. Liao JK, Shin WS, Lee WY, et al. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 1995; 270: 319-324. DOI:10.1074/jbc.270.1.319
  4. Blair A, Shaul PW, Yuhanna IS, et al. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 1999; 274: 32512-32519. DOI:10.1074/jbc.274.45.32512
  5. Badimon L, Martinez-Gonzalez J, Llorente-Cortes V, et al. Cell biology and lipoproteins in atherosclerosis. Curr Mol Med 2006; 6: 439-456. DOI:10.2174/156652406778018725
  6. Badimon L, Vilahur G, Padro T. Lipoproteins, platelets and atherothrombosis. Rev Esp Cardiol 2009; 62: 1161-1178. DOI:10.1016/S0300-8932(09)72385-1
  7. Camejo G, Hurt-Camejo E, Wiklund O, et al. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 1998; 139: 205-222. DOI:10.1016/S0021-9150(98)00107-5
  8. Csiszar A, Wang M, Lakatta EG, et al. Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol 2008; 105: 1333-1341. DOI:10.1152/japplphysiol.90470.2008
  9. Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868-874. DOI:10.1038/nature01323
  10. Simionescu M. Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 2007; 27: 266-274. DOI:10.1161/01.ATV.0000253884.13901.e4
  11. Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 2007; 7: 467-477. DOI:10.1038/nri2096
  12. Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007; 117: 195-205. DOI:10.1172/JCI29950
  13. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989; 74: 2527-2534.
  14. Hristov M, Leyendecker T, Schuhmann C, et al. Circulating monocyte subsets and cardiovascular risk factors in coronary artery disease. Thromb Haemost 2010; 104: 412-414. DOI:10.1160/TH10-01-0069
  15. Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J 2011; 32: 84-92. DOI:10.1093/eurheartj/ehq371
  16. Swirski FK, Weissleder R, Pittet MJ. Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29: 1424-1432. DOI:10.1161/ATVBAHA.108.180521
  17. Sunderkotter C, Nikolic T, Dillon MJ, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172: 4410-4417.
  18. Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317: 666-670. DOI:10.1126/science.1142883
  19. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 2009; 27: 165-197. DOI:10.1146/annurev.immunol.021908.132620
  20. Lindstedt KA, Kovanen PT. Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr Opin Lipidol 2004; 15: 567-573. DOI:10.1097/00041433-200410000-00011
  21. Collot-Teixeira S, Martin J, McDermott-Roe C, et al. CD36 and macrophages in atherosclerosis. Cardiovasc Res 2007; 75: 468-477. DOI:10.1016/j.cardiores.2007.03.010
  22. Llorente-Cortes V, Royo T, Otero-Vinas M, et al. Sterol regulatory element binding proteins downregulate LDL receptor-related protein (LRP1) expression and LRP1-mediated aggregated LDL uptake by human macrophages. Cardiovasc Res 2007; 74: 526-536. DOI:10.1016/j.cardiores.2007.02.020
  23. Suzuki H, Kurihara Y, Takeya M, et al. The multiple roles of macrophage scavenger receptors (MSR) in vivo: resistance to atherosclerosis and susceptibility to infection in MSR knockout mice. J Atheroscler Thromb 1997; 4: 1-11.
  24. Saad AF, Virella G, Chassereau C, et al. OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J Lipid Res 2006; 47: 1975-1983. DOI:10.1194/jlr.M600064-JLR200
  25. Choi SH, Harkewicz R, Lee JH, et al. Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 2009; 104: 1355-1363. DOI:10.1161/CIRCRESAHA.108.192880
  26. Miller YI, Choi SH, Fang L, et al. Toll-like receptor-4 and lipoprotein accumulation in macrophages. Trends Cardiovasc Med 2009; 19: 227-232. DOI:10.1016/j.tcm.2010.02.001
  27. Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001; 104: 3103-3108. DOI:10.1161/hc5001.100631
  28. Mullick AE, Soldau K, Kiosses WB, et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J Exp Med 2008; 205: 373-383. DOI:10.1084/jem.20071096
  29. Tabas I. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal 2009; 11: 2333-2339. DOI:10.1089/ars.2009.2469
  30. Tsukano H, Gotoh T, Endo M, et al. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol 30: 1925-1932.
  31. Llorente-Cortes V, Otero-Vinas M, Camino-Lopez S, et al. Aggregated low-density lipoprotein uptake induces membrane tissue factor procoagulant activity and microparticle release in human vascular smooth muscle cells. Circulation 2004; 110: 452-459. DOI:10.1161/01.CIR.0000136032.40666.3D
  32. Camino-Lopez S, Llorente-Cortes V, Sendra J, et al. Tissue factor induction by aggregated LDL depends on LDL receptor-related protein expression (LRP1) and Rho A translocation in human vascular smooth muscle cells. Cardiovasc Res 2007; 73: 208-216. DOI:10.1016/j.cardiores.2006.10.017
  33. Han CI, Campbell GR, Campbell JH. Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res 2001; 38: 113-119. DOI:10.1159/000051038
  34. Padro T, Pena E, Garcia-Arguinzonis M, et al. Low-density lipoproteins impair migration of human coronary vascular smooth muscle cells and induce changes in the proteomic profile of myosin light chain. Cardiovasc Res 2008; 77: 211-220. DOI:10.1093/cvr/cvm045
  35. Badimon JJ, Santos-Gallego CG, Badimon L. [Importance of HDL cholesterol in atherothrombosis: how did we get here? Where are we going?]. Rev Esp Cardiol 2010; 63 (Suppl 2): 20-35. DOI:10.1016/S0300-8932(10)70150-0
  36. Choi BG, Vilahur G, Yadegar D, et al. The role of high-density lipoprotein cholesterol in the prevention and possible treatment of cardiovascular diseases. Curr Mol Med 2006; 6: 571-587. DOI:10.2174/156652406778018590
  37. Cimmino G, Ibanez B, Vilahur G, et al. Up-regulation of reverse cholesterol transport key players and rescue from global inflammation by ApoA-I (Milano). J Cell Mol Med 2009; 13: 3226-3235. DOI:10.1111/j.1582-4934.2008.00614.x
  38. Stenvinkel P, Karimi M, Johansson S, et al. Impact of inflammation on epigenetic DNA methylation - a novel risk factor for cardiovascular disease? J Intern Med 2007; 261: 488-499. DOI:10.1111/j.1365-2796.2007.01777.x
  39. Sharma P, Kumar J, Garg G, et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol 2008; 27: 357-365. DOI:10.1089/dna.2007.0694
  40. Vickers KC, Remaley AT. MicroRNAs in atherosclerosis and lipoprotein metabolism. Curr Opin Endocrinol Diabetes Obes 2010; 17: 150-155. DOI:10.1097/MED.0b013e32833727a1
  41. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 2008; 105: 1516-1521. DOI:10.1073/pnas.0707493105
  42. Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2: ra81. DOI:10.1126/scisignal.2000610
  43. Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324: 1710-1713. DOI:10.1126/science.1174381
  44. Bonauer A, Boon RA, Dimmeler S. Vascular microRNAs. Curr Drug Targets 2010; 11: 943-949. DOI:10.2174/138945010791591313
  45. Badimon L, Badimon JJ. Mechanisms of arterial thrombosis in nonparallel streamlines: platelet thrombi grow on the apex of stenotic severely injured vessel wall. Experimental study in the pig model. J Clin Invest 1989; 84: 1134-1144. DOI:10.1172/JCI114277
  46. Molins B, Pena E, Padro T, et al. Glucose-regulated protein 78 and platelet deposition: effect of rosuvastatin. Arterioscler Thromb Vasc Biol 30: 1246-1252.
  47. Yaron G, Brill A, Dashevsky O, et al. C-reactive protein promotes platelet adhesion to endothelial cells: a potential pathway in atherothrombosis. Br J Haematol 2006; 134: 426-431. DOI:10.1111/j.1365-2141.2006.06198.x
  48. Molins B, Pena E, Vilahur G, et al. C-reactive protein isoforms differ in their effects on thrombus growth. Arterioscler Thromb Vasc Biol 2008; 28: 2239-2246. DOI:10.1161/ATVBAHA.108.174359
  49. Eisenhardt SU, Habersberger J, Murphy A, et al. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ Res 2009; 105: 128-137. DOI:10.1161/CIRCRESAHA.108.190611
  50. Badimon L, Badimon JJ, Vilahur G, et al. Pathogenesis of the acute coronary syndromes and therapeutic implications. Pathophysiol Haemost Thromb 2002; 32: 225-231. DOI:10.1159/000073571
  51. Parise L, Smyth S, Coller B. Platelet morphology, biochemistry, and function. McGraw-Hill Professional, New York; 2005.
  52. Viles-Gonzalez JF, Fuster V, Corti R, et al. Atherosclerosis regression and TP receptor inhibition: effect of S18886 on plaque size and composition--a magnetic resonance imaging study. Eur Heart J 2005; 26: 1557-1561. DOI:10.1093/eurheartj/ehi175
  53. Vilahur G, Casani L, Badimon L. A thromboxane A2/prostaglandin H2 receptor antagonist (S18886) shows high antithrombotic efficacy in an experimental model of stent-induced thrombosis. Thromb Haemost 2007; 98: 662-669.
  54. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 1992; 326: 242-250. DOI:10.1056/NEJM199201233260406
  55. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992; 326: 310-318. DOI:10.1056/NEJM199201303260506
  56. Butt E, Gambaryan S, Gottfert N, et al. Actin binding of human LIM and SH3 protein is regulated by cGMP- and cAMP-dependent protein kinase phosphorylation on serine 146. J Biol Chem 2003; 278: 15601-15607. DOI:10.1074/jbc.M209009200
  57. Owens AP, 3rd, Mackman N. Tissue factor and thrombosis: The clot starts here. Thromb Haemost 104: 432-439.
  58. Hemker HC, van Rijn JL, Rosing J, et al. Platelet membrane involvement in blood coagulation. Blood Cells 1983; 9: 303-317.
  59. Jennings LK. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 2009; 102: 248-257.
  60. Libby P, Okamoto Y, Rocha VZ, et al. Inflammation in atherosclerosis: transition from theory to practice. Circ J 2010; 74: 213-220. DOI:10.1253/circj.CJ-09-0706
  61. Sachais BS, Turrentine T, Dawicki McKenna JM, et al. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thromb Haemost 2007; 98: 1108-1113.
  62. Weyrich AS, Schwertz H, Kraiss LW, et al. Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 2009; 7: 241-246. DOI:10.1111/j.1538-7836.2008.03211.x
  63. Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 2001; 154: 485-490. DOI:10.1083/jcb.200105058
  64. Weyrich AS, Denis MM, Schwertz H, et al. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets. Blood 2007; 109: 1975-1983. DOI:10.1182/blood-2006-08-042192
  65. Evangelista V, Manarini S, Di Santo A, et al. De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin. Circ Res 2006; 98: 593-595. DOI:10.1161/01.RES.0000214553.37930.3e
  66. Mason KD, Carpinelli MR, Fletcher JI, et al. Programmed anuclear cell death delimits platelet life span. Cell 2007; 128: 1173-1186. DOI:10.1016/j.cell.2007.01.037
  67. Langer HF, Gawaz M. Platelets in regenerative medicine. Basic Res Cardiol 2008; 103: 299-307. DOI:10.1007/s00395-008-0721-4
  68. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006; 12: 557-567. DOI:10.1038/nm1400
  69. Stellos K, Bigalke B, Langer H, et al. Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. Eur Heart J 2009; 30: 584-593. DOI:10.1093/eurheartj/ehn566
  70. Hristov M, Zernecke A, Bidzhekov K, et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res 2007; 100: 590-597. DOI:10.1161/01.RES.0000259043.42571.68
  71. Mause SF, Ritzel E, Liehn EA, et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 122: 495-506.
  72. Koenen RR, Weber C. Platelet-derived chemokines in vascular remodeling and atherosclerosis. Semin Thromb Hemost 36: 163-169.
  73. Langer H, May AE, Daub K, et al. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res 2006; 98: e2-10. DOI:10.1161/01.RES.0000201285.87524.9e
  74. Seizer P, Schiemann S, Merz T, et al. CD36 and macrophage scavenger receptor a modulate foam cell formation via inhibition of lipid-laden platelet phagocytosis. Semin Thromb Hemost 36: 157-162.

You may also be interested in...

1.

Muhammad R. Marwali, Jawahar L. Mehta

Thromb Haemost 2006 96 4: 401-406

http://dx.doi.org/10.1160/TH06-07-0385

2.

Online Supplementary Material

R. Suades (1, 2), T. Padró (1, 2), R. Alonso (3), P. Mata (3), L. Badimon (1, 2, 4)

Thromb Haemost 2013 110 2: 366-377

http://dx.doi.org/10.1160/TH13-03-0238

3.
Didier Hanriot1,2*, Gaëlle Bello1,2*, Armelle Ropars1,2, Carole Seguin-Devaux5, Gaël Poitevin1,2, Sandrine Grosjean3, Véronique Latger-Cannard2,3,4, Yvan Devaux1,2,5, Faiez Zannad1,2, Véronique Regnault2,4, Patrick Lacolley1,2, Paul-Michel Mertes1,2, Ketsia Hess*1,2, Dan Longrois*1,2

Thromb Haemost 2008 99 3: 558-569

http://dx.doi.org/10.1160/TH07-06-0410