Advertisement

Contact Person

Dr. Elinor Switzer

Managing Editor

Phone: +49 (0)711 - 2 29 87 63
Fax: +49 (0)711 - 2 29 87 65
send an Email


Archive

Platelets, inflammation and tissue regeneration

Journal: Thrombosis and Haemostasis
ISSN: 0340-6245
Topic:

Contemporary issues in atherothrombosis

DOI: http://dx.doi.org/10.1160/THS10-11-0720
Issue: 2011: 105/Supplement 1
Pages: S13-S33

  1. Weyrich A, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J Thromb Haemost 2003; 1: 1897-1905. DOI:10.1046/j.1538-7836.2003.00304.x
  2. Nurden AT, Nurden P, Sanchez M, et al. Platelets and wound healing. Front Biosci 2008; 13: 3525-3548. DOI:10.2741/2947
  3. Zhang Q, Peyruchaud O, French KJ, et al. Sphingosine 1-phosphate stimulates fibronectin matrix assembly through a Rho-dependent signal pathway. Blood 1999; 93: 2984-2990.
  4. Takeya H, Gabazza EC, Aoki S, et al. Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells. Blood 2003; 102: 1693-1700. DOI:10.1182/blood-2002-11-3607
  5. Ryo J, Kim HJ, Chang E-J, et al. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J 2006; 25: 5840-5851. DOI:10.1038/sj.emboj.7601430
  6. Panetti TS, Hannah DF, Avraamides C, et al. Extracellular matrix molecules regulate endothelial cell migration stimulated by lysophosphatidic acid. J Thromb Haemost 2004; 2: 1645-1656. DOI:10.1111/j.1538-7836.2004.00902.x
  7. Boucharaba A, Serre C-M, Grès S, et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 2004; 114: 1714-1725.
  8. Kulkarni S, Woollard KJ, Thomas S, et al. Conversion of platelets from a pro-aggregatory to a pro-inflammatory adhesive phenotype: role of PAF in spatially regulating neutrophil adhesion and spreading. Blood 2007; 110: 1879-1886. DOI:10.1182/blood-2006-08-040980
  9. Lefebvre JS, Marleau S, Milot V, et al. Toll-like receptor ligands induce polymorphonuclear leukocyte migration: key roles for leukotriene B4 and platelet-activating factor. FASEB J 2010: 24: 637-647.
  10. Baldassarri S, Bertoni A, Bagarotti A, et al. The endocannabinoid 2-arachidonyl glycerol activates human platelets through non-CB1/CB2 receptors. J Thromb Haemost 2008; 6: 1772-1779. DOI:10.1111/j.1538-7836.2008.03093.x
  11. Coppinger JA, Cagney G, Toomey S, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004; 103: 2096-2104. DOI:10.1182/blood-2003-08-2804
  12. Reed GL. Platelet secretory mechanisms. Semin Thromb Hemost 2004; 30: 441-450. DOI:10.1055/s-2004-833479
  13. Kahner BN, Shankar H, Murugapppan S, et al. Nucleotide receptor signalling in platelets. J Thromb Haemost 2006; 4: 2317-2326. DOI:10.1111/j.1538-7836.2006.02192.x
  14. Grenegard M, Vretenbrant-Oberg K, Nylander M, et al. The ATP-gated P2X1 receptor plays a pivotal role in activation of aspirin-treated platelets by thrombin and epinephrine. J Biol Chem 2008; 283: 18493-18504. DOI:10.1074/jbc.M800358200
  15. Burnstock G. Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 2002; 22: 364-373. DOI:10.1161/hq0302.105360
  16. Lansdown AB. Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen 2002; 10: 271-285. DOI:10.1046/j.1524-475X.2002.10502.x
  17. Caen J, Wu Q. Hageman factor, platelets and polyphosphates, early history and recent connection. J Thromb Haemost 2010; 8: 1670-1674. DOI:10.1111/j.1538-7836.2010.03893.x
  18. Murata S, Ohkohchi N, Matsuo R, et al. Platelets promote liver regeneration in early period after hepatectomy in mice. World J Surg 2007; 31: 808-816. DOI:10.1007/s00268-006-0772-3
  19. Lang PA, Contaldo C, Georgiev P, et al. Aggravation of viral hepatitis by platelet-derived serotonin. Nat Med 2008; 14: 756-761. DOI:10.1038/nm1780
  20. Blair P, Flaumenhaft R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev 2009; 23: 177-189. DOI:10.1016/j.blre.2009.04.001
  21. Richardson JL, Shivdasani RA, Boers C, et al. Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 2005; 106: 4066-4075. DOI:10.1182/blood-2005-06-2206
  22. Nesbitt WS, Westein E, Tovar-Lopez FJ, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 2009; 15: 665-673. DOI:10.1038/nm.1955
  23. Hourdillé P, Hasitz M, Belloc F, et al. Immunocytochemical study of the binding of fibrinogen and thrombospondin to ADP- and thrombin-stimulated human platelets. Blood 1985; 65: 912-920.
  24. Sehgal S, Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 2007; 5: 2009-2016. DOI:10.1111/j.1538-7836.2007.02698.x
  25. Italiano Jr JE, Richardson JL, Patel-Hett S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008; 111: 1227-1233. DOI:10.1182/blood-2007-09-113837
  26. Ma L, Perini R, McKnight W, et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci USA 2005; 102: 216-220. DOI:10.1073/pnas.0406682102
  27. Gleissner CA, von Hundelshausen P, Ley K. Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 2008; 28: 1920-1927. DOI:10.1161/ATVBAHA.108.169417
  28. Kowalska MA, Rauova L, Poncz M. Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thromb Res 2010; 125: 292-296. DOI:10.1016/j.thromres.2009.11.023
  29. Schober A, Manka D, von Hundelshausen P, et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointimal formation after arterial injury. Circulation 2002; 106: 1523-1529. DOI:10.1161/01.CIR.0000028590.02477.6F
  30. Breland UM, Michelson AE, Skjelland M, et al. Raised MCP-4 levels in asymptomatic carotid atherosclerosis: an inflammatory link between platelet and monocyte activation. Cardiovasc Res 2010; 86: 265-273. DOI:10.1093/cvr/cvq044
  31. Denis MM, Tolley ND, Bunting M, et al. Escaping the nuclear confines: signal-dependent pre-RNA splicing in anucleate platelets. Cell 2005; 122: 379-391. DOI:10.1016/j.cell.2005.06.015
  32. von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100: 27-40. DOI:10.1161/01.RES.0000252802.25497.b7
  33. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood 2008; 111: 5271-5281. DOI:10.1182/blood-2008-01-078204
  34. von Hundelshausen P, Koenen RR, Weber C. Platelet-mediated enhancement of leukocyte adhesion. Microcirculation 2009; 16: 84-96. DOI:10.1080/10739680802564787
  35. Langer HF, Daub K, Braun G, et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol 2007; 27: 1463-1470. DOI:10.1161/ATVBAHA.107.141515
  36. Sudhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009; 323: 474-477. DOI:10.1126/science.1161748
  37. Ren Q, Barber HK, Crawford GL, et al. Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 2007; 18: 24-33. DOI:10.1091/mbc.E06-09-0785
  38. Lemmons PP, Chen D, Whiteheart SW. Molecular mechanisms of platelet exocytosis: requirements for α-granule release. Biochem Biophys Res Commun 2000; 267: 875-880. DOI:10.1006/bbrc.1999.2039
  39. Tolmachova T, Abrink M, Futter CE, et al. Rab27b regulates number and secretion of dense granules. Proc Natl Acad Sci USA 2007; 104: 5872-5877. DOI:10.1073/pnas.0609879104
  40. Schoenwaelder SM, Yuan Y, Josefsson EF, et al. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 2009; 114: 663-666. DOI:10.1182/blood-2009-01-200345
  41. Dean WL, Lee MJ, Cummins TD, et al. Proteomic and functional characterization of platelet microparticle size classes. Thromb Haemost 2009; 102: 711-718.
  42. Doeuvre L Plawinski L, Toti F, et al. Cell-derived microparticles: a new challenge in neuroscience. J Neurochem 2009; 110: 457-468. DOI:10.1111/j.1471-4159.2009.06163.x
  43. Janowska-Wieczorek A, Marquez-Curtis L, Wieczorek M, et al. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 2005; 46: 1199-1209. DOI:10.1111/j.1537-2995.2006.00871.x
  44. Dashevsky O, Varon D, Brill A. Platelet-derived microparticles promote invasiveness of prostrate cancer cells with upregulation of MMP-2 production. Int J Cancer 2009; 14: 1773-1777. DOI:10.1002/ijc.24016
  45. Horstman LL, Jy W, Ahn YS, et al. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7: 10. DOI:10.1186/1742-2094-7-10
  46. Denis MM, Tolley ND, Bunting M, et al. Escaping the nuclear confines: signal-dependent pre-RNA splicing in anucleate platelets. Cell 2005; 122: 379-391. DOI:10.1016/j.cell.2005.06.015
  47. Schwertz H, Tolley ND, Foulks JM, et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006; 203: 2433-2440. DOI:10.1084/jem.20061302
  48. Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67: 525-544. DOI:10.1007/s00018-009-0210-4
  49. Beaulieu LM, Freedman JE. The role of inflammation in regulating platelet production and function: Toll-like receptors in platelets and megakaryocytes. Thromb Res 2010; 125: 205-209. DOI:10.1016/j.thromres.2009.11.004
  50. Aslam R, Speck ER, Kim M, et al. Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 2006; 107: 637-641. DOI:10.1182/blood-2005-06-2202
  51. Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 2008; 6: 415-420. DOI:10.1111/j.1538-7836.2007.02865.x
  52. Clark SR, Ma AC, Taverner SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med 2007; 13: 463-469. DOI:10.1038/nm1565
  53. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699-709. DOI:10.1056/NEJM200103083441001
  54. Preston RJ, Tran S, Johnson JA, et al. Platelet factor 4 impairs the anticoagulant activity of activated protein C. J Biol Chem 2009; 284: 5869-5875. DOI:10.1074/jbc.M804703200
  55. Blair P, Rex S, Vitseva O, et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104: 346-354. DOI:10.1161/CIRCRESAHA.108.185785
  56. Kälvegren H, Skoglund C, Helldahl C, et al. Toll-like receptor 2 stimulation of platelets is mediated by purinergic P2X1-dependent Ca2+ mobilization, cyclooxygenase and purinergic P2Y1 and P2Y12 receptor activation. Thromb Haemost 2010; 103: 398-407. DOI:10.1160/TH09-07-0442
  57. Jimenez-Dalmaroni MJ, Xiao N, Corper AL, et al. Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2. PLoS One 2009; 4: e7411. DOI:10.1371/journal.pone.0007411
  58. Washington AV, Schubert RL, Quigley L, et al. A TREM family member, TLT-1 is found exclusively in the α-granules of megakaryocytes and platelets. Blood 2004; 104: 1042-1047. DOI:10.1182/blood-2004-01-0315
  59. Washington AV, Gibot S, Acevedo I, et al. TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J Clin Invest 2009; 119: 1489-1501. DOI:10.1172/JCI36175
  60. Haselmayer P, Grosse-Hovest L, von Landenberg P, et al. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 2007; 110: 1029-1035. DOI:10.1182/blood-2007-01-069195
  61. Flaujac C, Boukour S, Cramer-Bordé E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 2010; 67: 545-556. DOI:10.1007/s00018-009-0209-x
  62. Chaipan C, Soilleux EJ, Simpson P, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type I capture by platelets. J Virol 2006; 80: 8951-8960. DOI:10.1128/JVI.00136-06
  63. Gavrilovskaya IN, Gorbunova EE, Mackow ER. Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J Virol 2010; 84: 4832-4839. DOI:10.1128/JVI.02405-09
  64. Bridges DJ, Bunn J, van Mourik JA, et al. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood 2010; 115: 1472-1474. DOI:10.1182/blood-2009-07-235150
  65. McMorran BJ, Marshall VM, de Graafe C, et al. Platelets kill intra-erthyrocytic malarial parasites and mediate survival to infection. Science 2009; 323: 797-800. DOI:10.1126/science.1166296
  66. Krijgsveld J, Zaat SA, Meeldijk J, et al. Thrombocidins, microbicidal proteins from human blood platelets are C-terminal deletion products of CXC chemokines. J Biol Chem 2000; 275: 20374-20381. DOI:10.1074/jbc.275.27.20374
  67. Iannacone M, Sitia G, Isogawa M, et al. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 2008; 105: 629-634. DOI:10.1073/pnas.0711200105
  68. Redland EK, Ueland T, Pedersen TM, et al. Activation of platelets by Aspergillus fumigatus and potential role of platelets in the immunopathogenesis of Aspergillosis. Infect Immun 2010; 78: 1269-1275. DOI:10.1128/IAI.01091-09
  69. Peerschke E, Yin AW, Ghebrehlwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol 2010; 47: 2170-2175. DOI:10.1016/j.molimm.2010.05.009
  70. Del Conde I, Cruz MA, Zhang H, et al. Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201: 871-879. DOI:10.1084/jem.20041497
  71. Licht C, Pluthero FG, Li L, et al. Platelet-associated complement factor H in healthy persons and patients with atypical HUS. Blood 2009; 114: 4538-4545. DOI:10.1182/blood-2009-03-205096
  72. Hara T, Shimizu K, Ogawa F, et al. Platelets control leukocyte recruitment in a murine model of cutaneous arthus reaction. Am J Pathol 2010; 176: 259-269. DOI:10.2353/ajpath.2010.081117
  73. Niemann S, Kehrel BE, Heilmann C, et al. Pneumococcal association to platelets is mediated by soluble fibrin and supported by thrombospondin-1. Thromb Haemost 2009; 102: 735-742.
  74. De Haas CJ, Weeterings C, Vughs MM, et al. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibα and αIIbβ3. J Thromb Haemost 2009; 7: 1867-1874. DOI:10.1111/j.1538-7836.2009.03564.x
  75. Miajlovic H, Zapotoczna M, Geoghegan JA, et al. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureas with the GPIIb-IIIa reecptor on platelets. Microbiology 2010; 156: 920-928. DOI:10.1099/mic.0.036673-0
  76. Sprague DL, Sowa JM, Elzey BD, et al. The role of platelet CD154 in the modulation of adaptive immunity. Immunol Res 2007; 39: 185-193. DOI:10.1007/s12026-007-0074-3
  77. Solanilla A, Pasquet JM, Viallard JF, et al. Platelet-associated CD154 in immune thrombocytopenic purpura. Blood 2005; 105: 215-218. DOI:10.1182/blood-2003-07-2367
  78. Elzey BD, Schmidt NW, Crist MA, et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 2008; 111: 3684-3691. DOI:10.1182/blood-2007-05-091728
  79. Sprague DL, Elzey BD, Crist SA, et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 2008; 110: 5028-5036. DOI:10.1182/blood-2007-06-097410
  80. Urquizu-Pasilla M, Balada E, Cortès F, et al. Serum levels of soluble CD40 ligand at flare and at remission in patients with systemic lupus erythrematosus. J Rheumatol 2009; 36: 953-960. DOI:10.3899/jrheum.080978
  81. Esmon CT. Crosstalk between inflammation and thrombosis. Maturitas 2008; 61: 122-131. DOI:10.1016/j.maturitas.2008.11.008
  82. Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586-592. DOI:10.1056/NEJM199908193410807
  83. Goerge T, Ho-Tin-Noe B, Carbo C, et al. Inflammation induces hemorrhage in thrombocytopenia. Blood 2008; 111: 4958-4964. DOI:10.1182/blood-2007-11-123620
  84. Campbell RA, Overmyer KA, Selzman CH, et al. Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood 2009; 114: 4886-4896. DOI:10.1182/blood-2009-06-228940
  85. Zhao BQ, Chauhan AK, Canault M, et al. Von Willebrand factor-cleaving protease ADAMST13 reduces ischemic brain injury in experimental stroke. Blood 2009; 114: 3329-3334. DOI:10.1182/blood-2009-03-213264
  86. Beutler B. Toll-like receptors: how they work and what they do. Curr Opin Hematol 2002; 9: 2-10. DOI:10.1097/00062752-200201000-00002
  87. Hu J, Van den Steen PE, Sang Q-XA, et al. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature 2007; 6: 480-498. DOI:10.1038/nmat2034
  88. Niessen F, Schaffner F, Furlan-Fregula C, et al. Dendritic cell PAR1-SIP3 signalling couples coagulation and inflammation. Nature 2008; 452: 654-658. DOI:10.1038/nature06663
  89. Eisenhardt SU, Habersberger J, Murphy A, et al. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ Res 2009; 105: 128-137. DOI:10.1161/CIRCRESAHA.108.190611
  90. Libby P, Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med 2002; 8: 1257-1262. DOI:10.1038/nm1102-1257
  91. May AE, Seizer P, Gawaz M. Platelets: Inflammatory firebugs of vascular walls. Arterioscler Thromb Vasc Biol 2008; 28: 5-10. DOI:10.1161/ATVBAHA.107.158915
  92. Podrez EA, Byzova TV, Febbralo M, et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 2007; 13: 1086-1095. DOI:10.1038/nm1626
  93. Ma Y, Ashraf MZ, Podrez EA. Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. Blood 2010; 116: 1932-1941. DOI:10.1182/blood-2010-02-268508
  94. Gunarsson P, Levander L, Pählsson P, et al. Alpha(1)-acid glycoprotein (AGP)-induced platelet shape change involves the Rho/Rho kinase signalling pathway. Thromb Haemost 2009; 102: 694-703.
  95. O'Connor R, Cryan LM, Wynne K, et al. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: Application to the platelet releasate. J Biomed Biotechnol 2010; 2010: 107859. DOI:10.1155/2010/107859
  96. Vandendries ER, Furie BC, Furie B. Role of P-selectin and PSGL-1 in coagulation and thrombosis. Thromb Haemost 2004; 92: 459-466.
  97. McEver RP. Rolling back to neutrophil adhesion. Nat Immunol 2010; 11: 282-284. DOI:10.1038/ni0410-282
  98. Dong ZM, Brown AA, Wagner DD. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 2000; 101: 2290-2295.
  99. Ridker P, Buring JE, Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation 2001; 103: 491-495.
  100. Kisucka J, Chauhan AK, Zhao AK, et al. Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis. Blood 2009; 113: 6015-6022. DOI:10.1182/blood-2008-10-186650
  101. André P, Hartwell D, Hrachoinova I, et al. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc Natl Acad Sci USA 2000; 97: 13835-13840. DOI:10.1073/pnas.250475997
  102. Woollard KJ, King D, Kulkarni S, et al. Raised plasma soluble P-selectin in peripheral arterial occlusive disease enhances leukocyte adhesion. Circ Res 2006; 98: 149-158. DOI:10.1161/01.RES.0000199295.14073.69
  103. Davi G, Romano M, Mazzetti A, et al. Increased levels of soluble P-selectin in hypercholesterolemic patients. Circulation 1998; 97: 953-957.
  104. Hassan GS, Merhi Y, Mourad WM. CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol 2009; 30: 165-172. DOI:10.1016/j.it.2009.01.004
  105. Viallard JF, Solanilla A, Gauthier N, et al. Increased soluble and platelet-associated CD40 ligand in essential thrombocythemia and reactive thrombocytosis. Blood 2002; 99: 2612-2614. DOI:10.1182/blood.V99.7.2612
  106. Crist SA, Sprague DL, Ratliff TL. Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes. Blood 2008; 111: 3553-3561. DOI:10.1182/blood-2007-05-088161
  107. Choi WS, Jeon OH, Kim DS. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin αIIbβ3. J Thromb Haemost 2010; 8: 1364-1371. DOI:10.1111/j.1538-7836.2010.03837.x
  108. Antoniades C, Bakogiannis C, Tousoulis D, et al. The CD40/CD40L system: Linking inflammation with atherothrombosis. J Am Coll Cardiol 2009; 54: 669-677. DOI:10.1016/j.jacc.2009.03.076
  109. Levi M, van der Poll T, Buller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109: 2698-2704. DOI:10.1161/01.CIR.0000131660.51520.9A
  110. Pluvinet R, Oliver R, Krupinski J, et al. CD40: an upstream master switch for endothelial cell activation uncovered by RNAi-coupled transcriptional profiling. Blood 2008; 112: 3624-3637. DOI:10.1182/blood-2008-03-143305
  111. André P, Prasad KC, Denis CV, et al. CD40L stabilizes arterial thrombi by a b3 integrin-dependent mechanism. Nat Med 2002; 8: 247-252. DOI:10.1038/nm0302-247
  112. Prasad KS, André P, He M, et al. Soluble CD40L induces b3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci USA 2003; 100: 12367-12371. DOI:10.1073/pnas.2032886100
  113. May AE, Kalsch T, Massberg S, et al. Engagement of glycoprotein IIb/IIIa (αIIbβ3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 2002; 106: 2111-2117. DOI:10.1161/01.CIR.0000033597.45947.0F
  114. Chen C, Chai H, Wang X, et al. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells. Blood 2008; 112: 3205-3216. DOI:10.1182/blood-2008-03-143479
  115. Chai H, Aghaie K, Zhou W. Soluble CD40 ligand induces human coronary artery smooth muscle cells proliferation and migration. Surgery 2009; 146: 5-11. DOI:10.1016/j.surg.2009.04.004
  116. Donners MM, Beckers L, Lievens D, et al. The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood 2008; 111: 4596-4604. DOI:10.1182/blood-2007-05-088906
  117. Li G, Sanders JM, Bevard MH, et al. CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury. Am J Pathol 2008; 172: 1141-1152. DOI:10.2353/ajpath.2008.070633
  118. Zirlak A, Maier C, Gerdes N, et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 2007; 115: 1571-1580. DOI:10.1161/CIRCULATIONAHA.106.683201
  119. Léveillé C, Bouillon M, Guo W, et al. CD40 ligand binds to α5β1 and triggers cell signaling. J Biol Chem 2007; 282: 5143-5151. DOI:10.1074/jbc.M608342200
  120. Ferro D, Loffredo L, Polimeni L, et al. Soluble CD40 ligand predicts ischemic stroke and myocardial infarction in patients with nonvalvular atrial fibrillation. Arterioscler Thromb Vasc Biol 2007; 27: 2763-2768. DOI:10.1161/ATVBAHA.107.152777
  121. Kageyama K, Nakajima Y, Shibasaki M, et al. Increased platelet, leukocyte, and endothelial cell activity are associated with increased coagulability in patients after total hip arthroplasty. J Thromb Haemost 2007; 5: 738-745. DOI:10.1111/j.1538-7836.2007.02443.x
  122. Khan SY, Kelher MR, Heal JM, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood 2006; 108: 2455-2462. DOI:10.1182/blood-2006-04-017251
  123. Chauhan AK, Kisucka J, Brill A, et al. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 2008; 205: 2065-2074. DOI:10.1084/jem.20080130
  124. George JN. Clinical practice. Thrombotic thrombocytopenic purpura. New Engl J Med 2006; 354: 1927-1935. DOI:10.1056/NEJMcp053024
  125. Bernard JJ, Seweryniak KE, Koniski AD, et al. Foxp3 regulates megakaryopoiesis and platelet function. Arteriscler Thromb Vasc Biol 2009; 29: 1874-1882. DOI:10.1161/ATVBAHA.109.193805
  126. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. J Med Genet 2002; 39: 537-545. DOI:10.1136/jmg.39.8.537
  127. Lambert MP, Rauova L, Bailey M, et al. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications. Blood 2007; 110: 1153-1160. DOI:10.1182/blood-2007-01-067116
  128. Natal C, Restituto P, Inigo C, et al. The proinflammatory mediator CD40 ligand is increased in the metabolic syndrome and modulated by adiponectin. J Clin Endocrionol Metab 2008; 93: 2319-2327. DOI:10.1210/jc.2007-2491
  129. Unek IT, Bayraktar F, Solmaz D, et al. Enhanced levels of soluble CD40 ligand and C-reactive protein in a total of 312 patients with metabolic syndrome. Metabolism 2010; 59: 305-313. DOI:10.1016/j.metabol.2009.04.034
  130. Lopez-Vilchez I, Escolar G, Diaz-Ricart M, et al. Tisssue factor-enriched vesicles are taken up by platelets and induce platelet aggregation in the presence of factor VIIa. Thromb Haemost 2007; 97: 202-211.
  131. Dale GL. Coated platelets: an emerging component of the procoagulant response. J Thromb Haemost 2005; 3: 2185-2192. DOI:10.1111/j.1538-7836.2005.01274.x
  132. Busso N, Chobaz-Péclat V, Hamilton J, et al. Essential role of platelet activation via protease activated receptor 4 in tissue factor-mediated inflammation. Arthritis Res Ther 2008; 10: R42. DOI:10.1186/ar2400
  133. Lay AJ, Donahue D, Tsai MJ, et al. Acute inflammation is exacerbated in mice genetically predisposed to a severe protein C deficiency. Blood 2007; 109: 1984-1991. DOI:10.1182/blood-2006-07-037945
  134. Lindmark E, Tenno T, Siegbahn A. Role of platelet P-selectin and CD40L in the induction of monocyte tissue factor expression. Arterioscler Thromb Vasc Biol 2000; 20: 2322-2328.
  135. Del CondeI, Shrimpton CN, Thiagarajan P, et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 2005; 106: 1604-1611. DOI:10.1182/blood-2004-03-1095
  136. Taylor FBJ, Chang A, Ruf W, et al. Lethal E coli septic shock shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 1991; 33: 127-134.
  137. Moons AH, Levi M, Peters RJ. Tissue factor and coronary artery disease. Cardiovasc Res 2002; 53: 313-325. DOI:10.1016/S0008-6363(01)00452-7
  138. Maroney SA, Haberichter SL, Friese P, et al. Active tissue factor pathway inhibitor is expressed on the surface of coated platelets. Blood 2007; 109: 1931-1937. DOI:10.1182/blood-2006-07-037283
  139. Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4: 617-629. DOI:10.1038/nri1418
  140. Levesque J-P, Liu F, Simmons PJ, et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104: 65-72. DOI:10.1182/blood-2003-05-1589
  141. Hu J, Van den Steen PE, Sang Q-XA, et al. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature 2007; 6: 480-498. DOI:10.1038/nmat2034
  142. Fernandez-Patron C, Martinez-Cuesta MA, Salas E, et al. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Throm Haemost 1999; 82: 1730-1735.
  143. Kazes I, Elalamy I, Sraer J-D, et al. Platelet release of trimolecular complex components MTI-MMP/TIMP2/MMP2: involvement in MMP2 activation and platelet aggregation. Blood 2000; 96: 3064-3069.
  144. Johnson C, Galis ZS. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell mediated collagen organization. Arterioscler Thromb Vasc Biol 2004; 24: 54-60. DOI:10.1161/01.ATV.0000100402.69997.C3
  145. Sawicki G, Sanders EJ, Salas E, et al. Localization and translocation of MMP-2 during aggregation of human platelets. Thromb Haemost 1998; 80: 836-839.
  146. Trivedi V, Boire A, Tchernychev B, et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 2009; 137: 332-343. DOI:10.1016/j.cell.2009.02.018
  147. Bergmeier W, Piffath CL, Cheng G, et al. Tumour necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ Res 2004; 95: 677-683. DOI:10.1161/01.RES.0000143899.73453.11
  148. Bender M, Hoffmann S, Stegner D, et al. Differentially regulated GPVI ectodomain shedding by multiple platelet-expresed proteins. Blood 2010; 116: 3347-3355. DOI:10.1182/blood-2010-06-289108
  149. Brill A, Chauhan AK, Canault M, et al. Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc Res 2009; 84: 137-144. DOI:10.1093/cvr/cvp176
  150. Neth P, Ciccarella M, Egea V, et al. Wnt signalling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 2006; 24: 1892-1903. DOI:10.1634/stemcells.2005-0503
  151. Steele BM, Harper MT, Macaulay IC, et al. Canonical Wnt signalling negatively regulates platelet function. Proc Natl Acad Sci USA 2009; 106: 19836-19841.
  152. Murate T, Yamashita K, Isogai C, et al. The production of tissue inhibitors of metalloproteinases (TIMPs) in megakaryopoiesis: possible role of platelet- and megakaryocyte-derived TIMPs in bone marrow fibrosis. Br J Haematol 1997; 99: 181-189. DOI:10.1046/j.1365-2141.1997.3293146.x
  153. Radomski A, Jurasz P, Sanders EJ, et al. Identification, regulation and role of tissue inhibitor of metalloproteinases-4 (TIMP-4) in human platelets. Br J Pharmacol 2002; 137: 1330-1338. DOI:10.1038/sj.bjp.0704936
  154. Chirco R, Liu XW, Jung KK, et al. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 2006; 25: 99-113. DOI:10.1007/s10555-006-7893-x
  155. Villeneuve J, Block A, Le Bousse M-C, et al. Tissue inhibitors of matrix metalloproteases in platelets and megakaryocytes: A novel organization for these secreted proteins. Exp Hematol 2009; 37: 849-856. DOI:10.1016/j.exphem.2009.03.009
  156. Aso Y. Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Front Biosci 2007; 12: 2957-2966. DOI:10.2741/2285
  157. Lijnen HR. Pleiotropic functions of plasminogen inhibitor-1. J Thromb Haemost 2005; 3: 35-44. DOI:10.1111/j.1538-7836.2004.00827.x
  158. Boulaftali Y, Adam F, Venise L, et al. Anticoagulant and antithrombotic properties of platelet protease nexin-1. Blood 2010; 115: 97-106. DOI:10.1182/blood-2009-04-217240
  159. Smith HW, Marshall CJ. Regulation of cell signaling by uPAR. Nat Rev Mol Cell Biol. 2010; 11: 23-38. DOI:10.1038/nrm2821
  160. Garg N, Goyal N, Strawn TL, et al. Plasminogen activator inhibitor-1 and vitronectin expression level and stoichiometry regulate vascular smooth muscle cell migration through physiological collagen matrices. J Thromb Haemost 2010; 8: 1847-1854. DOI:10.1111/j.1538-7836.2010.03907.x
  161. Eitzman DT, Westrick RJ, Xu Z, et al. Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood 2000; 96: 4212-4215.
  162. Dejouvencel T, Doeuvre L, Lacroix R, et al. Fibrinolytic cross-talk: a new mechanism for plasmin. Blood 2010; 115: 2048-2056. DOI:10.1182/blood-2009-06-228817
  163. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9: 653-660. DOI:10.1038/nm0603-653
  164. Folkman J, Browder T, Palmblad J. Angiogenesis research: guidelines for translation to clinical application. Thromb Haemost 2001; 86: 23-33.
  165. Deregibus MC, Buttiglieri S, Russo S, et al. CD-40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem 2003; 278: 1808-1814. DOI:10.1074/jbc.M300711200
  166. Fang L, Yan Y, Komuves LG, et al. PDGF C is a selective alpha-platelet-derived receptor agonist that is highly expressed in platelet α-granules and vascular smooth muscle. Arterioscler Thromb Vasc Biol 2004; 24: 787-792. DOI:10.1161/01.ATV.0000120785.82268.8b
  167. Li L, Asteriou T, Bernert B, et al. Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochem J 2007; 404: 327-336. DOI:10.1042/BJ20061757
  168. Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 2004; 63: 226-235. DOI:10.1016/j.cardiores.2004.04.012
  169. Walshe TE, Dole VS, Maharaj AS, et al. Inhibition of VEGF or TGF-β signaling activates endothelium and increases leukocyte rolling. Arterioscler Thromb Vasc Biol 2009; 29: 1185-1192. DOI:10.1161/ATVBAHA.109.186742
  170. Min J-K, Lee LH, Kim Y-M, et al. Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor kappaB pathway. Circ Res 2005; 96: 300-307. DOI:10.1161/01.RES.0000155330.07887.EE
  171. Brunner G, Blakytny R. Extracellular regulation of TGF-beta activity in wound repair: growth factor latency as a sensor mechanism to injury. Thromb Haemost 2004; 92: 253-261.
  172. Ahamed J, Janczak CA, Wittkowski KM, et al. In vitro and In vivo evidence that thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of platelet-derived TGF-β1. PLoS One 2009; 4: e6608. DOI:10.1371/journal.pone.0006608
  173. Tran DQ, Andersson J, Wang R, et al. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 2009; 106: 294-299.
  174. Jimenez B, Volpert OV, Crawford SE, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6: 41-48. DOI:10.1038/71517
  175. Isenberg JS, Calzada MJ, Zhou L, et al. Endogenous thrombospondin-1 is not necessary for proliferation but is permissive for vascular smooth muscle cell responses to platelet-derived growth factor. Matrix Biol 2005; 24: 110-123. DOI:10.1016/j.matbio.2005.01.002
  176. Bikfalvi A. Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor 4 and the VEGF-VEGFR system. Biochem Pharmacol 2004; 68: 1017-1021. DOI:10.1016/j.bcp.2004.05.030
  177. Folkman J. Antiangiogenesis in cancer therapy - endostatin and its mechanism of action. Exp Cell Res 2006; 312: 594-607. DOI:10.1016/j.yexcr.2005.11.015
  178. Bambace NM, Levis JE, Holmes CE. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 2010; 21: 85-93. DOI:10.3109/09537100903470298
  179. Cicha I, Garlichs CD, Daniel WG, et al. Activated human platelets release connective tissue growth factor. Thromb Haemostasis 2004; 91: 755-760.
  180. Thulin A, Ringvall A, Dimberg A, et al. Activated platelets provide a functional microenvironment for the antiangiogenic fragment of histidine-rich glycoprotein. Mol Cancer Res 2009; 7: 1792-1802. DOI:10.1158/1541-7786.MCR-09-0094
  181. Kitaura H, Zhou P, Ross FP, et al. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 2005; 115: 282-290. DOI:10.1172/JCI26132
  182. Choi SJ, Cruz JC, Craig F, et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factory in multiple myeloma. Blood 2000; 96: 671-675.
  183. Klinger MH, Wilhelm D, Bubel S, et al. Immunocytochemical localization of the chemokines RANTES and MIP-1α within human platelets and their release during storage. Int Arch Allergy Immunol 1995; 107: 541-546. DOI:10.1159/000237097
  184. Sipe JB, Zhang J, Waits C, et al. Localization of bone morphogenetic proteins (BMPs)-2, -4, and -6 within megakaryocytes and platelets. Bone 2004; 35: 1316-1322. DOI:10.1016/j.bone.2004.08.020
  185. Taylor VL, Spencer EM. Characterization of insulin-like growth factor-binding protein-3 to a novel receptor on human platelet membranes. J Endocrinol 2001; 168: 307-313. DOI:10.1677/joe.0.1680307
  186. Fujiwara H. Do circulating blood cells contribute to maternal tissue remodeling and embryo-maternal cross-talk around the implantation period? Mol Hum Reprod 2009; 15: 335-343. DOI:10.1093/molehr/gap027
  187. Echtler K, Stark K, Lorenz M, et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nature Med 2010; 16: 75-82. DOI:10.1038/nm.2060
  188. Carramolino L, Fuentes J, Garcia-Andrés C, et al. Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ Res 2010; 106: 1197-1201. DOI:10.1161/CIRCRESAHA.110.218073
  189. Uhrin P, Zaujec J, Breuss JM, et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 2010; 115: 3997-4005. DOI:10.1182/blood-2009-04-216069
  190. Bertozzi CC, Schmaier AA, Mericko P, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116: 661-670. DOI:10.1182/blood-2010-02-270876
  191. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nature Rev Immunol 2006; 6: 508-519. DOI:10.1038/nri1882
  192. Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury in mice. Circ Res 2002; 91: 845-851. DOI:10.1161/01.RES.0000040420.17366.2E
  193. Luttun A, Lutgens E, Manderveld A, et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 2004; 109: 1408-1414. DOI:10.1161/01.CIR.0000121728.14930.DE
  194. Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Med 1999; 5: 1135-1142. DOI:10.1038/13459
  195. Dole VS, Matuska J, Vasile E, et al. Thrombocytopenia and platelet abnormalities in high-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2008; 28: 1111-1116. DOI:10.1161/ATVBAHA.108.162347
  196. Shattil SJ, Anaya-Galindo R, Bennett J, et al. Platelet hypersensitivity induced by cholesterol incorporation. J Clin Invest 1975; 55: 636-643. DOI:10.1172/JCI107971
  197. Smyth SS, Reis ED, Zhang W, et al. b3-integrin-deficient mice but not P-selectin-deficient mice develop intimal hyperplasia after vascular injury. Correlation with leukocyte recruitment to adherent platelets 1 hour after injury. Circulation, 2001; 103: 2501-2507.
  198. Evalangista V, Pamuklar Z, Piccoli A, et al. Src family kinases mediate neutrophil adhesion to adherent platelets. Blood 2007; 109: 2461-2469. DOI:10.1182/blood-2006-06-029082
  199. Massberg S, Schürzinger K, Lorenz M, et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 2005; 112: 1180-1188. DOI:10.1161/CIRCULATIONAHA.105.539221
  200. Huo Y, Schober A, Forlow SB, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein. E. Nat Med 2003; 9: 61-67. DOI:10.1038/nm810
  201. Oki T, Eto K, Izawa K, et al. Evidence that integrin αIIbβ3-dependent interaction of mast cells with fibrinogen exacerbates chronic inflammation. J Biol Chem 2009; 284: 3143-3172. DOI:10.1074/jbc.M109.030213
  202. Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischaemic stroke: novel insights and targets for treatment. Blood 2008; 112: 3555-3562. DOI:10.1182/blood-2008-04-144758
  203. Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the 'magic bullet'. Nature Reviews DrugDiscovery 2003; 2: 775-789. DOI:10.1038/nrd1198
  204. Opdenakker G, Nelissen I, van Damme J. Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neurol 2003; 2: 747-756. DOI:10.1016/S1474-4422(03)00587-8
  205. Yong VW, Zabad RK, Agrawal S, et al. Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulation. J Neurol Sci 2007; 259: 79-84. DOI:10.1016/j.jns.2006.11.021
  206. Querfurth HW, LaFerla FM. Alzheimer's disease. New Engl J Med 2010; 362: 329-344. DOI:10.1056/NEJMra0909142
  207. Skovronsky DM, Lee M-Y, Pratico D. Amyloid precursor protein and amyloid b peptide in human platelets. Role of cyclooxygenase and protein kinase C. J Biol Chem 2001; 276: 17036-17043. DOI:10.1074/jbc.M006285200
  208. Evin G, Holsiinger RM, Masters CL, et al. Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. J Neurosci Res 2003; 74: 386-392. DOI:10.1002/jnr.10745
  209. Paul J, Strickland S, Melchior JP. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimers disease. J Exp Med 2007; 204: 1999-2008. DOI:10.1084/jem.20070304
  210. Klotz L, Diehl L, Dani J, et al. Brain endothelial PPAR gamma controls inflammation induced CD4+ T cell adhesion and transmigration in vitro. J Neuroimmunol 2007; 190: 34-43. DOI:10.1016/j.jneuroim.2007.07.017
  211. Currie J, Ramsbottom R, Ludlow H, et al. Cardio-respiratory fitness, habitual physical activity and serum brain derived neutrotrophic factor (BDNF) in men and women. Neurosci Letts 2009; 451: 152-155. DOI:10.1016/j.neulet.2008.12.043
  212. Fujimura H, Altar CA, Chen R, et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 2002; 87: 728-734.
  213. Wiesner T, Bugl S, Mayer F, et al. Differential changes in platelet VEGF, TSP, CXCL12 and CXCL4 in patients with metastatic cancer. Clin Exp Metastasis 2010; 27: 141-149. DOI:10.1007/s10585-010-9311-6
  214. Erpenbeck L, Schön MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 2010; 115: 3427-3436. DOI:10.1182/blood-2009-10-247296
  215. Falanga A, Panova-Noeva M, Russo L. Procoagulant mechanisms in tumour cells. Best Pract Res Clin Haematol 2009; 22: 49-60. DOI:10.1016/j.beha.2008.12.009
  216. Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumour activity. Cancer Res 2009; 69: 7775-7783. DOI:10.1158/0008-5472.CAN-09-2123
  217. Kim YJ, Borsig L, Varki NM, et al. P-selectin deficiency attenuates tumour growth and metastasis. Proc Natl Acad Sci USA 1998; 95: 9325-9330. DOI:10.1073/pnas.95.16.9325
  218. Robinson SD, Reynolds LE, Wyder L, et al. Beta3-integrin regulates vascular endothelial growth factor-A-dependent permeability. Arterioscler Thromb Vasc Biol 2004; 24: 2108-2114. DOI:10.1161/01.ATV.0000143857.27408.de
  219. Jain S, Zuka M, Liu J, et al. Platelet glycoprotein Ibalpha supports experimental lung metastasis. Proc Natl Acad Sci USA 2007; 104: 9024-9028. DOI:10.1073/pnas.0700625104
  220. Jain S, Russell S, Ware J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost 2009; 10: 1713-1717. DOI:10.1111/j.1538-7836.2009.03559.x
  221. Boucharaba A, Serre GM, Guglielmi J, et al. The type I lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA 2006; 103: 9643-9648. DOI:10.1073/pnas.0600979103
  222. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 20: 752-760. DOI:10.1002/ijc.20657
  223. Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis. J Biol Chem 2000; 275: 1521-1524. DOI:10.1074/jbc.275.3.1521
  224. Klement GL, Yip TT, Cassiola F, et al. Platelets actively sequester angiogenesis regulators. Blood 2009; 113: 2835-2842. DOI:10.1182/blood-2008-06-159541
  225. Kerr BA, Miocinovic R, Smith AK, et al. Comparison of tumor and microenvironment secretomes in plasma and platelets during prostrate cancer growth in a xenograft model. Neoplasia 2010; 12: 388-396.
  226. Cervi D, Yip TT, Bhattacharya N, et al. Platelet-associated PF-4 as a biomarker of early tumour growth. Blood 2008 111: 1201-1207.
  227. Zaslavsky A, Baek KH, Lynch RC, et al. Platelet-derived thrombospondin-1 (TSP-1) is a critical negative regulator and potential biomarker of angiogenesis. Blood 2010; 115: 4605-4613. DOI:10.1182/blood-2009-09-242065
  228. Peterson JE, Zurakowski D, Italiano JE Jr, et al. Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol 2010; 8: 487-493. DOI:10.1002/ajh.21732
  229. Suzuki-Inoue K, Kato Y, Inoue O, et al. Involvement of the snake toxin receptor CLEC-2 in podoplanin-mediated platelet activation by cancer cells. J Biol Chem 2007; 282: 25993-26001. DOI:10.1074/jbc.M702327200
  230. Katoh N. Platelets as versatile regulators of cutaneous inflammation. J Dermatol Sci 2009; 53: 89-95. DOI:10.1016/j.jdermsci.2008.08.019
  231. O'Sullivan BP, Michelson AD. The inflammatory role of platelets in cystic fibrosis. Am J Respir Crit Care Med. 2006; 173: 483-490. DOI:10.1164/rccm.200508-1243PP
  232. Garbaraviciene J, Diehl S, Varwig D, et al. Platelet P-selectin reflects a state of cutaneous inflammation: possible application to monitor treatment efficacy in psoriasis. Exp Dermatol 2010; 19: 736-741. DOI:10.1111/j.1600-0625.2010.01095.x
  233. Wu B, Liu G, Yube K, et al. Effects of platelet release products on neutrophilic activity in human whole blood. Inflamm Res 2009; 58: 321-328. DOI:10.1007/s00011-009-8230-y
  234. Smyth SS, McEver RP, Weyrich AS, et al. Platelet functions beyond hemostasis. J Thromb Haemost 2009; 7: 1759-1766. DOI:10.1111/j.1538-7836.2009.03586.x
  235. Vlaar AP, Hofstra JJ, Kulik W, et al. Supernatant of stored platelets causes lung inflammation and coagulopathy in a novel in vivo transfusion model. Blood 2010; 116: 1360-1368. DOI:10.1182/blood-2009-10-248732
  236. Antczak AJ, Singh N, Gay SR, et al. IgG-complex stimulated platelets: a source of sCD40L and RANTES in initiation of inflammatory cascade. Cell Immunol 2010; 263: 129-133. DOI:10.1016/j.cellimm.2010.03.009
  237. Selman M, Cisneros-Lira J, Gaxiola M, et al. Matrix metalloproteinases inhibition attenuates tobacco smoke-induced emphysema in guinea pigs. Chest 2003; 123: 1633-1641. DOI:10.1378/chest.123.5.1633
  238. Cory DB, Kiss A, Song LZ, et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 2004; 18: 995-997.
  239. Asaduzzaman M, Lavasani S, Rahman M, et al. Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med 2009; 37: 1389-1396. DOI:10.1097/CCM.0b013e31819ceb71
  240. Menchen L, Marin-Jiminez I, Arias-Salgado EG, et al. Matrix metalloprotease 9 is involved in Crohn's disease-associated platelet hyperactivation through the release of soluble CD40L. Gut 2009; 58: 920-928. DOI:10.1136/gut.2008.150318
  241. Schenk M, Bouchon A, Seibold F, et al. TREM-1-expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest 2007; 117: 3097-3106. DOI:10.1172/JCI30602
  242. Tchetverikov I, Lohmander LS, Verzijl N, et al. MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis. Ann Rheum Dis 2005; 64: 694-698. DOI:10.1136/ard.2004.022434
  243. Tchetverikov I, Lard LR, De Groot J, et al. Matrix metalloproteinases-3, -8, -9 as markers of disease activity and joint damage progression in early rheumatoid arthritis. Ann Rheum Dis 2003; 62: 1094-1099. DOI:10.1136/ard.62.11.1094
  244. Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327: 580-583. DOI:10.1126/science.1181928
  245. Lisman T, Porte RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood 2010; 116: 878-885. DOI:10.1182/blood-2010-02-261891
  246. Laschke MW, Dold S, Mener MD, et al. Platelet-dependent accumulation of leukocytes in sinusoids mediates hepatocellular damage in bile-duct ligation-induced cholestasis. Br J Pharmacol 2008; 153: 148-156. DOI:10.1038/sj.bjp.0707578
  247. Zaldivar MM, Pauels K, von Hundelshausen P, et al. CXC chemokine ligand 4 (Cxcl14) is a platelet-derived mediator of experimental liver fibrosis. Hepatology 2010; 51: 1345-1353. DOI:10.1002/hep.23435
  248. Villeneuve J, Lepreux S, Mulot A, et al. A protective role for CD154 in hepatic steatosis. Hepatology 2011; 52: 1968-1979. DOI:10.1002/hep.23935
  249. Yamakuchi M, Kirkilesz-Smith NC, Ferlito M, et al. Antibody to human leukocyte antigen triggers endothelial exocytosis. Proc Natl Acad Sci USA 2007; 104: 1301-1306. DOI:10.1073/pnas.0602035104
  250. Morrell CN, Murata K, Swaim AM, et al. In vitro platelet-endothelial cell interactions in response to major histocompatibility complex alloantibody. Circ Res 2008; 102: 777-785. DOI:10.1161/CIRCRESAHA.107.170332
  251. Sanchez M, Anitua E, Orive G, et al. Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sports Med 2009; 39: 345-354. DOI:10.2165/00007256-200939050-00002
  252. Hwang YJ, Choi JY. Addition of mesenchymal stem cells to the scaffold of platelet-rich plasma is beneficial for the reduction of the consolidation period in mandibular distraction osteogenesis. J Oral Maxillofac Surg 2010; 68: 1112-1124. DOI:10.1016/j.joms.2008.08.038
  253. Maynard DM, Heijnen HF, Gahl WA, et al. The alpha granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 2010; 8: 1786-1796. DOI:10.1111/j.1538-7836.2010.03932.x

You may also be interested in...

1.
Paolo Zamboni, Donato Gemmati

Thromb Haemost 2007 98 1: 131-137

http://dx.doi.org/10.1160/TH06-11-0625

2.
C. Reinhardt

Hämostaseologie 2007 27 1: 55-58

3.
Jinan Li,1 Per-Olof Eriksson,2 Annika Hansson,2 Sten Hellström2, Tor Ny1*

Thromb Haemost 2006 96 4: 512-519

http://dx.doi.org/10.1160/TH06-03-0168