Bleeding risks with combination of oral anticoagulation plus antiplatelet therapy: Is clopidogrel any safer than aspirin when combined with warfarin?

Kok Hoon Tay; Deirde A. Lane; Gregory Y. H. Lip
Haemostasis Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, United Kingdom

Many patients are taking oral anticoagulation therapy (OAC) for various reasons, for example, prosthetic heart valve, atrial fibrillation (AF), venous thromboembolism, intracardiac thrombus or recurrent strokes. The numbers of patients on OAC are increasing with ageing of the general population. Indeed, out-patient prescriptions for warfarin rose from 21 million in 1998 to over 30 million in 2004 in the United States (1).

Given the increasing prevalence and incidence of probably the most common indication for OAC, AF, it is no surprise that even more patients – including elderly subjects and those with vascular disease, who have AF – will be anticoagulated, especially in the setting of risk factors for stroke and thromboembolism, whether the AF is paroxysmal or not (2, 3).

Many OAC users have concomitant coronary artery disease and/or peripheral arterial disease (PAD). Some of patients also require percutaneous coronary intervention (PCI) following presentation with acute coronary syndrome (ACS), or even peripheral vascular interventions for PAD. Hence, the addition of dual- or mono- antiplatelet therapy to their existing anticoagulated regime is common in everyday clinical practice (4). For example, in a study by Johnson et al. (5) of approximately 5,000 of their commercially insured population managed by an anticoagulation service, 40% were on combined warfarin and antiplatelet therapy.

Nonetheless, the use of the combination of OAC and antiplatelet agents leads to an increased risk of bleeding (4). In one retrospective registry analysis involving 10,093 patients, there was a three-fold increase in risk of intracranial haemorrhage (odds ratio 2.95, 95% confidence interval [CI] 1.58–5.51) and a rise in major bleeding rates from 2.0% for the warfarin mono-therapy group to 2.8% for the combined therapy group at 180 days (6).

Clinicians tend to add antiplatelet therapy to existing OAC in patients with AF if they have associated vascular disease, on the presumption that OAC ‘acts’ on stroke and thromboembolism prevention for AF, whilst the antiplatelet drugs ‘acts’ on the vascular disease. What is the evidence of stroke and thromboembolism prevention by combination OAC plus aspirin therapy in this context? One small prospective randomised controlled trial (7) assessed the use of aspirin and OAC (international normalised ratio [INR] of 2–3) compared to anticoagulation arm alone in patients with AF but this was stopped following poor recruitment (157 patients in less than a year) as well as a trend towards a higher risk of arterial thromboembolism and substantial increase in major bleeding risk (odds ratio [OR] 3.29, 95% CI 0.33–32.3).

A post-hoc retrospective analysis of two contemporary large randomised clinical trials of anticoagulation for AF also demonstrated substantial bleeding risk with combination therapy of aspirin and OAC (major bleeding 3.9% per year; p<0.01), with no beneficial effect of combination OAC plus aspirin therapy on stroke and myocardial infarction (8). Thus, aspirin should not be added to patients receiving oral anticoagulation therapy for stable coronary (or peripheral) artery disease given the relatively limited evidence for benefit and the potential for significant harm from bleeding (9).

A particular management problem arises in relation to adding OAC to antiplatelet therapy occurs in relation to anticoagulated patients presenting with ACS or those who need PCI with coronary stenting (4). The joint American College of Cardiology/ American Heart Association/European Society of Cardiology 2006 Guidelines on the management of AF recommend that following PCI or revascularization surgery in patients with AF, low-dose aspirin (less than 100 mg/day) and/or clopidogrel (75 mg/day) may be given concurrently with anticoagulation to prevent myocardial ischaemic events, but acknowledge that these strategies have not been thoroughly evaluated and are associated with an increased risk of bleeding (10). The guidelines also suggest that clopidogrel should be given for a minimum of one month after implantation of a bare metal stent, at least three months for a sirolimus-eluting stent, at least six months for a paclitaxel-eluting stent, and 12 months or longer in selected pa-
tients, following which warfarin may be continued as monotherapy in the absence of a subsequent coronary event (10). These guidelines do not address the issue of a presentation with an ACS (where PCI is often performed) and bleeding risk.

Given the need to balance stroke prevention, recurrent cardiac ischaemia and/or stent thrombosis, versus bleeding, more recent consensus guidelines (11, 12) provide more detailed guidance, by advocating initial triple therapy (with OAC, aspirin and clopidogrel) in patients with high risk for the initial period (depending on clinical presentation and type of stent, although bare metal stents are advocated) and swapping over to OAC plus clopidogrel thereafter. The published data – as reviewed by Rubboli et al. (11) – suggest that the prevalence of major bleeding with triple therapy use is 2.6–4.6% at 30 days, which increases to 13.9% at six months and 7.4–10.3% at 12 months.

In the current issue of *Thrombosis and Haemostasis*, the study by Schalekamp et al. (13) evaluates the bleeding risk of concomitant use of antiplatelet therapy (aspirin, clopidogrel and dipyridamole) among new users of OAC (acenocoumarol or phenprocoumon). In this study, 1,848 cases were compared against 5,818 controls via the PHARMO record linkage system (http://www.pharmo.nl) in the Netherlands. The daily dose of aspirin used was between 30–100 mg, and for clopidogrel, 75 mg and dipyridamole, 150–450 mg. Their results show that all antiplatelet drugs increased the risk of major bleeding when used in combination with OAC, although the greatest bleeding risk was seen with clopidogrel (OR 2.9, 95% CI 1.2–6.9, p=0.018) followed by aspirin (OR 1.6, 95% CI 1.3–1.9, p=0.001) and dipyridamole (OR 1.5, 95% CI 1.0–2.3, p=0.078), even after adjustment for use of non-steroidal anti-inflammatory drugs, antibiotics usage, steroids and gastroprotective agents. One third of bleeding events arose from the gastrointestinal tract whilst two-third were non-gastrointestinal (approximately 20% intracranial). Even for gastrointestinal bleeding per se, clopidogrel increased bleeding risk much more than that seen with dipyridamole and aspirin: adjusted OR 3.6 (95% CI 0.9–13.5, p=0.062) versus 2.2 (95% CI 1.1–4.6, p=0.043) versus 2.1 (95% CI 1.5–3.1, p<0.001), respectively.

Hence, these results from Schalekamp et al. (13) suggest that the use of OAC plus clopidogrel may not be any safer than OAC plus aspirin. Indeed, the potential of harm from bleeding by the addition of antiplatelet drugs (whether clopidogrel, aspirin or dipyridamole) to existing OAC may outweigh the perceived benefits.

Nonetheless, the study by Schalekamp et al. (13) is a retrospective analysis of registry data, and limitations are evident. Clearly, such registry analyses are limited by the quality of the data and validation. Indeed, statistical adjustments cannot account for all biological variables, and pathophysiological processes. Bleeding is multifactorial and careful considerations ought to be taken into account prior to initiation of OAC or combining potent antithrombotic drugs in any patient. A previous history of bleeding, ischaemic heart disease and polypharmacy are risk factors associated with OAC-related bleeding (6, 14, 15). Advanced age (especially 80 and older) is a risk factor for major bleeding (i.e. intracranial haemorrhage) regardless of whether or not the subject is taking OAC, even after adjusting for prior stroke, gastrointestinal bleeding, anaemia and renal impairment (16). The systematic review undertaken as part of the United Kingdom National Institute for Health and Clinical Excellence (NICE) guidelines for AF management found that a history of myocardial infarction, anaemia, diabetes, previous history of bleeding and polypharmacy (especially with aspirin and non-steroidal anti-inflammatory drugs) were risk factors for anticoagulation-related bleeding (17).

Since OAC is often prescribed to elderly patients with diverse co-morbidities (i.e. falls, impaired cognitive function), the consequences from major bleeding events could potentially be devastating – especially intracranial haemorrhage – when compared to extracranial haemorrhage complications (primarily gastrointestinal bleeding) which are largely reversible. Of note, 90% of deaths from warfarin-associated haemorrhage stem from intra-

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kuijer et al. [20]</strong></td>
<td>0</td>
<td>1–3</td>
<td>&gt;3</td>
</tr>
<tr>
<td><strong>Beyth et al. [21]</strong></td>
<td>0</td>
<td>1–2</td>
<td>≥3</td>
</tr>
<tr>
<td><strong>Gage et al. [22]</strong></td>
<td>0–1</td>
<td>2–3</td>
<td>≥4</td>
</tr>
<tr>
<td><strong>Shireman et al. [23]</strong></td>
<td>≤</td>
<td>&gt;1.07 to &lt; 2.19</td>
<td>≥2.19</td>
</tr>
</tbody>
</table>

Table 1: Published bleeding risk scores.
craniocerebral haemorrhages in patients on warfarin for AF (18). Even if they survive these events, intracranial haemorrhage is still associated with major functional disability.

Perhaps an assessment of bleeding risk may help management, in the same way that numerous stroke risk stratification scores have been developed. There are four published bleeding risk scores which have been validated for bleeding risk in patients on OAC (see Table 1) (20–23). All four have different modalities in evaluating bleeding risks and categorization into low-, moderate- and high-risk strata. Age (at least from 60 years old onwards) is collectively taken into account by all four schema, whilst two (21, 22) do not consider female gender as significant risk factor to be included in the bleeding risk model. Anaemia is regarded as important risk factor in three schema (21–23), whilst recent myocardial infarction is only listed in the schema by Beyer et al. (21). The remaining bleeding risk factors included in the four bleeding risk scoring systems include diverse factors such as diabetes mellitus, malignancy, previous stroke, liver/renal disease, recent bleed, concurrent antplatelet drug usage and excessive falls. As with stroke risk stratification, the lack of consensus and varying predictive value (as well as clinical applicability) limits their widespread application.

In conclusion, all antplatelet drugs increase the risks of bleeding in patients who are already taking OAC. The important findings by Schalekamp et al. (13) requires thoughtful re-examination of the recommendations provided in consensus guidelines (10–12) that OAC plus clopidogrel may be preferred to OAC plus aspirin. Newer drugs with less bleeding risks but of similar efficacy to the current OAC (largely the vitamin K antagonists, such as warfarin) are clearly needed. Bleeding risk assessment should also be part of clinical assessment for stroke and thromboembolism, to allow a useful balanced review of the risk-benefit ratio of OAC treatment in everyday clinical practice.

References