Effect of two doses of aspirin on thromboxane biosynthesis and platelet function in patients undergoing coronary surgery

Marta Brambilla1; Alessandro Parolari1,2; Marina Camera1,2; Susanna Colli2; Sonia Eligini2; Chiara Centenaro1; Achille Anselmo1,3; Francesco Alamanni1,4; Elena Tremoli1,2

1 Centro Cardiologico Monzino, IRCCS, Milano, Italy; 2 Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy; 3 Department of Inflammation and Immunology, Istituto Clinico Humanitas, Rozzano, Milano, Italy; 4 Department of Cardiovascular Sciences, Università degli Studi di Milano, Milano, Italy

Correspondence to:
Elena Tremoli
Centro Cardiologico Monzino, IRCCS
Via Parea, 4
20138 Milano, Italy
Tel.: +39 02 58002456, Fax: +39 02 58002623
E-mail: elena.tremoli@ccfm.it; elena.tremoli@unimi.it

Financial support:
This study was supported by a grant from Centro Cardiologico Monzino IRCCS, Milano, and from Italian Ministry of Health, Rome, Italy (Ricerca Corrente 2006–2007).

Received: July 21, 2009
Accepted after major revision: November 2, 2009
Prepublished online: January 13, 2010
doi:10.1160/TH09-07-0470
Thromb Haemost 2010; 103: 516–524

Introduction

Meta-analyses of clinical trials indicate that aspirin treatment of patients with cardiovascular disease can reduce adverse events by 25–44% (1). The anti-platelet effect of aspirin is due to the irreversible inhibition of platelet cyclooxygenase (COX)-1, the enzyme catalysing the conversion of arachidonic acid to thromboxane (TX)A2, which is rapidly inactivated to TXB2. An almost complete suppression (>90%) of platelet COX-1 activity is required to prevent TX formation and subsequent platelet aggregation (2, 3). This assumption, however, has been recently questioned in a study carried out with a modified Born method of platelet aggregation (4).

Several studies have reported that aspirin sometimes fails to completely inhibit platelet function in patients with cardiovascular disease (5). The term aspirin resistance is presently used to describe the inability of aspirin to reduce TX production or to produce a typical effect on one or more in vitro-tests of platelet function (6).

Aspirin resistance may be due to several reasons. Among them, alternative “upstream” pathways of platelet activation, such as stimulation of receptors for ADP, collagen or thrombin, or aspirin-insensitive TX biosynthesis (e.g. via monocyte COX-2) have been proposed (6). Acquired or genetic factors could also impair the inhibitory effect of aspirin on platelets (e.g. increased platelet turnover or polymorphisms involving platelet-associated proteins) (7). Moreover, it should be emphasised that the assessment of aspirin resistance is not simple because it is highly assay-dependent (8, 9), and a general agreement on standardised, reproducible and specific tests to detect this phenomenon is still lacking (10–12).

Patients after coronary artery bypass graft (CABG) are at high risk of adverse cardiovascular events, despite aspirin treatment. Occlusion of the bypass, either evident or silent, is one of the most threatening complications. A high incidence of resistance, evidenced as an incomplete inhibition of TX biosynthesis and platelet aggregation, has been reported in patients after CABG who received 100 mg aspirin (13, 14). From a therapeutic standpoint, it is im-
portant to establish whether aspirin resistance, detected in this clinical setting, can be overcome by increasing the dose.

To this aim, we evaluated the effect of two aspirin doses (100 or 325 mg, enteric coated formulations), administered to patients who underwent CABG, on platelet function and TX biosynthesis by using different tests. A group of patients with vascular risk factors (VRF patients) without indication of CABG and a group of healthy subjects (HS) who both received 100 mg aspirin for 5 days were enrolled as controls.

Methods

Patients and controls

This prospective study, which complies with the Declaration of Helsinki, was conducted at Centro Cardiologico Monzino IRCCS after approval from the Institutional Review Board. Sixty candidates to CABG surgery were consecutively enrolled following the AHA/ACC guidelines and 56 gave informed consent.

Pre-operative inclusion criteria were ejection fraction >30% and left ventricular end-diastolic pressure <20 mmHg. Patients aged over 80 years, suffering from renal or liver disease or taking drugs affecting coagulation or fibrinolysis within 10 days prior to surgery were excluded. Intra- and post-operative exclusion criteria were excessive bleeding (>1,000 ml/24 h) or re-exploration for bleeding, peri-operative myocardial infarction, stroke or renal failure requiring dialysis. Patients admitted for an emergency procedure following failed percutaneous transluminal coronary angioplasty and off-pump coronary surgery were excluded.

Healthy subjects (HS, n = 10, 80% males, mean age 48 ± 8 years) were recruited among the hospital staff. Patients with vascular risk factors (VRF, n = 9, 78% males, mean age 56 ± 2 years; 56% hypertensives, 11% diabetics, 100% dyslipidaemics) were enrolled from those attending the clinic for global control of cardiovascular risk at Centro Cardiologico Monzino IRCCS.

Intervention

At baseline (T₀), before surgery, patients were without anti-platelet drugs for at least 3–5 days. Anaesthesia and CABG surgery were as previously described (15). The day after surgery, patients were randomised by a computer-generated list to receive either 100 or 325 mg enteric coated aspirin (Cardioaspirin 100® or Aspirina 03®, Bayer, Milan, Italy) once daily for 5 days. No additional antithrombotic drugs or NSAIDs, except heparin, were administered. Paracetamol or tramadol were used for post-operative pain. Patients, investigators and the staff involved were blinded to randomisation and treatment schedule. HS and VRF patients received a morning dose of 100 mg aspirin for 5 days. The treatment effect was assessed in patients 3 and 5 days after surgery (T₁ and T₃, respectively) and at day 5 (T₅) in HS and VRF patients.

The following determinations were performed: (i) platelet aggregation induced by collagen and ADP in platelet-rich plasma (PRP) by light-transmission aggregometry; (ii) TXB₂ levels in PRP stimulated with collagen, in serum, and in whole blood (WB) incubated with bacterial lipopolysaccharide (LPS); (iii) 11-dehydrothromboxane B₂ (11-dh TXB₂) in urine; (iv) platelet activation in WB by platelet function analyser (PFA-100®, Dade-Behring, Milan, Italy).

Sample collection

Blood was drawn from the antecubital vein in 3.5 ml evacuated tubes containing 3.2% sodium citrate or without anticoagulant. Sampling was done in the morning, 5–24 h before surgery (T₁) and 16 to 21 h post-aspirin administration (both for T₁ and for T₃). For studies with LPS-cultured WB, blood was collected in heparin, and aspirin (30 μmol/L, Flectadol, Sanofi Synthelabo Spa, Milan, Italy) was added to prevent COX-1 activity. Serum was prepared from WB, after spontaneous clotting at 37°C for 30 min. Morning urine samples were divided into aliquots and stored at –80°C.

Platelet aggregation and thromboxane synthesis

PRP was prepared by blood centrifugation (160 x g for 15 min) and platelet aggregation was performed by a ChronoLog Optical Aggregometer (model 490, Mascia Brunelli, Milan, Italy) without adjusting platelet count (16, 17). Pilot experiments were performed in order to select the more appropriate agonists. Although arachidonic acid is considered the most COX-1-selective among platelet agonists, we found a high degree of variability in the aggregatory response to this agonist. Therefore, collagen type I (4 μg/ml, Mascia Brunelli) and ADP (4 μM, Sigma Chemical Co., Milan, Italy) were used. Aggregation was expressed as change in transmittance (%) detected 5 min after the addition of the stimulus. In vitro-studies were carried out in PRP samples incubated with aspirin (100 μM Flectadol) for 30 min before the addition of collagen.

Following aggregation with collagen, PRP samples were centrifuged (700 x g for 15 min) and TXB₂ levels were determined as a measure of COX activity (exclusively platelet-derived) by enzyme immunoassay (EIA kit, Cayman Chemical, Ann Arbor, MI, USA). Serum TXB₂ levels were also determined as a measure of the overall COX activity of blood cells (largely platelet-derived).

The inter-assay coefficients of variation were <10% for both platelet aggregation and TXB₂ immunoassay.

Urinary 11-dehydrothromboxane B₂ (11-dh TXB₂) measurement

11-dh TXB₂ was measured using enzyme immunoassay (EIA kit, Cayman Chemical) after extraction and purification on SPE (C18)
Cyclooxygenase-2-dependent thromboxane biosynthesis in whole blood

Aliquots of WB were cultured at 37°C with or without 10 μg/ml LPS (Escherichia coli 0111:B4, Sigma) for 24 h (18). WB was then centrifuged (700 x g for 15 min) and TXB2 was measured in plasma.

Platelet function analyser (PFA-100®)

The PFA-100® point-of-care assay (Dade-Behring) assesses platelet activation in WB under high shear. Standard collagen/epinephrine (CEPI) or collagen/ADP (CADP) cartridges were used. Aspirin treatment usually prolongs CEPI closure time (CT) but not CADP-CT. Patients were defined as non-responder to aspirin treatment when CEPI-CT was in the normal range (<193 sec) despite the CADP-CT. Patients were defined as non-responder to aspirin treatment usually prolongs CEPI closure time (CT) but not CADP-CT. Patients were defined as non-responder to aspirin when CEPI-CT was in the normal range (<193 sec) despite the treatment (9). The inter-assay coefficient of variation was <15%.

Results

Treatment

Sixty patients were enrolled in the study. Four declined to participate after the enrolment. There were two discontinuations because of inadequate venous access, three for excessive bleeding and two due to technical failures (unusable samples). A total of 49 patients underwent all the analytical procedures. Twenty-eight received 100 mg aspirin (Group A) and 21 received 325 mg aspirin (Group B). 11-dh TXB2 could be measured in 20 and 17 patients assigned to Group A and B, respectively.

Table 1 shows the clinical characteristics and medications of the study population.

Before surgery, mean platelet counts were within the normal range and were similar in the two groups (220 ± 60 and 210 ± 51 x 103/μl, respectively) at T0. At T1 (3 days after surgery), because of haemodilution during extracorporeal circulation, platelet counts were 190 ± 53 and 165 ± 33 x 103/μl, respectively. At T2, platelet counts were higher than at T1 (324 ± 83 and 252 ± 77 x 103/μl, P = 0.005 vs T0). At T1 and T2, mean platelet counts were not significantly different between the two groups (P = 0.07).

Effect on platelet aggregation

Platelet aggregation in response to 4 μg/ml collagen was similarly reduced by 100 or 325 mg aspirin (38.5 and 36.9 %, respectively, at T0) remaining, however, >40% in about half of the patients in each group, both at T1 and T2 (Fig. 1A). Aggregation values were in-

Statistics

A sample size of 30 subjects per group was planned in order to detect as significant (alpha = 0.05, power = 90%) a difference of 35% in the frequency of patients with TXB2 levels in serum <15 ng/ml, assuming that this value would be reached in 95% of patients on 325 mg dose and in 60% of those on 100 mg. With the actual sample size reached (21 and 28 in the two groups, respectively) the power was reduced to approximately 80%. Continuous variables with skewed distributions are presented as medians and interquartile ranges and were compared by Wilcoxon signed-rank test (within subjects) and by the Kruskall-Wallis and Wilcoxon rank-sum test (between groups). Variables with nearly normal distributions are presented as means ± SD and were compared by paired t-test (within subjects) and by ANOVA and two sample t-test (between groups). Categorical variables are presented as frequencies and percentages and were compared by chi-square or Fisher exact test, when appropriate. Associations between variables were assessed by Spearman correlation. A value of P<0.05 was considered significant. All analyses were two-sided and were performed with SAS statistical package 9.13 (SAS Institute Inc., Cary, NC, USA).

Table 1: Characteristics of the study patients.

<table>
<thead>
<tr>
<th></th>
<th>Aspirin 100 mg (Group A)</th>
<th>Aspirin 325 mg (Group B)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>28 (57%)</td>
<td>21 (43%)</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>22 (79%)</td>
<td>18 (86%)</td>
<td>0.71</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65 ± 8.3</td>
<td>63 ± 7.2</td>
<td>0.38</td>
</tr>
<tr>
<td>Cardiovascular risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>15 (54%)</td>
<td>13 (62%)</td>
<td>0.56</td>
</tr>
<tr>
<td>Diabetes</td>
<td>10 (36%)</td>
<td>4 (19%)</td>
<td>0.34</td>
</tr>
<tr>
<td>Smoking (current)</td>
<td>1 (4%)</td>
<td>1 (5%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
<td>19 (68%)</td>
<td>16 (76%)</td>
<td>0.52</td>
</tr>
<tr>
<td>Preoperative medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>23 (82%)</td>
<td>19 (90%)</td>
<td>0.68</td>
</tr>
<tr>
<td>β-blockers</td>
<td>9 (32%)</td>
<td>9 (43%)</td>
<td>0.44</td>
</tr>
<tr>
<td>Lipid-lowering agents</td>
<td>7 (25%)</td>
<td>6 (29%)</td>
<td>0.78</td>
</tr>
<tr>
<td>Glucose-lowering agents</td>
<td>4 (14%)</td>
<td>0 (0%)</td>
<td>0.13</td>
</tr>
<tr>
<td>Diuretics</td>
<td>7 (25%)</td>
<td>9 (43%)</td>
<td>0.19</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>5 (18%)</td>
<td>1 (5%)</td>
<td>0.22</td>
</tr>
<tr>
<td>Nitrates</td>
<td>12 (43%)</td>
<td>13 (62%)</td>
<td>0.19</td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal anastomoses</td>
<td>3.1 ± 0.92</td>
<td>2.6 ± 0.73</td>
<td>0.07</td>
</tr>
<tr>
<td>Transfused patients</td>
<td>9 (32%)</td>
<td>4 (19%)</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD or number (%) of patients. * Red blood cells.
Figure 1: Effect of two aspirin doses (100 and 325 mg, Group A and Group B, respectively) on platelet aggregation. A) Platelet-rich plasma (PRP) aggregation induced by collagen (4 μg/ml) was measured by light transmission aggregometry before (T0) and 3 and 5 days after surgery (T1 and T2, respectively). Inset: PRP aggregation induced by collagen (4 μg/ml) in healthy subjects (HS) and in patients with vascular risk factor (VRF patients) before (T0) and after (T2) 100 mg aspirin for five days. Individual aggregations and mean values are shown. Platelet aggregation was similarly reduced by the two doses (-38.5%, Group A, and -36.9%, Group B, at T2) in patients after CABG. In HS and VRF patients, platelet aggregation was reduced by more than 75%. B) PRP aggregation induced by adenosine diphosphate, ADP (4 μM), in patients after CABG and in HS and VRF patients before (T0, filled symbol) and after (T2, open symbol) 5 day aspirin treatment. Data are % aggregation (mean ± SD) recorded every minute for 5 minutes. *P = 0.05 vs T0.
ded more than double of those measured in HS or VRF patients who received 100 mg aspirin for 5 days (Fig. 1A, inset; \(P = 0.003 \) vs Group A patients for both control groups). In these latter groups platelet aggregation was reduced by more than 75%.

Five day aspirin treatment, either 100 or 325 mg, did not affect ADP-induced platelet aggregation in patients after surgery (Fig. 1B); by contrast, 100 mg aspirin reduced ADP-induced aggregation in HS or VRF patients, as evidenced by the reversal of the second-phase of aggregation (Fig. 1B).

Taken together, data indicate that increased residual platelet activity, as reflected by collagen- or ADP-induced PRP aggregation, was observed in patients after CABG and that the phenomenon was not prevented by the higher aspirin dose.

Effect on platelet thromboxane biosynthesis

TX biosynthesis by collagen-stimulated PRP was, instead, differently reduced by the two aspirin doses: TXB\(_2\) levels (that did not differ between Group A and Group B at \(T_0 \)) remained significantly higher in Group A than in Group B, both at \(T_1 \) and at \(T_2 \) (Fig. 2), and than in HS or VRF patients (\(P = 0.003 \) and \(P = 0.001 \) vs Group A patients, respectively) (Fig. 2, inset). At \(T_2 \), aspirin reduced TXB\(_2\) biosynthesis by 94.7 and 98.6 % in Group A and B, respectively.

TX biosynthesis was measured also in serum to assess the residual capacity of blood cells to produce this metabolite. The obtained results closely paralleled those in collagen-stimulated PRP. Serum TXB\(_2\) levels were significantly higher in Group A than in Group B either at \(T_1 \) or at \(T_2 \) (at \(T_2 \): 13.42 [8.9, 35.6] and 8.33 [4.7, 14.1] ng/ml in Group A and B, respectively, \(P = 0.04 \)). TXB\(_2\) reduction was indeed <90% in nearly half (46%) patients from Group A and in 14% patients from Group B (\(P = 0.017 \) vs Group A).

Noteworthy, TXB\(_2\) levels measured either in serum or in collagen-stimulated PRP were highly correlated in both groups of patients (\(r = 0.72 \) and \(r = 0.79 \) for Group A and B, respectively, \(P < 0.0001 \) for both).

When dividing Group A patients into good (A1, \(n = 13 \)) and poor (A2, \(n = 15 \)) responders, based on a cut-off for serum TXB\(_2\) of 15 ng/ml at \(T_2 \) (19), collagen-induced platelet aggregation was significantly different in the two subgroups accounting for 56.8 ± 23.4% and 30.3 ± 18.7% in subgroup A1 and A2, respectively (\(P = 0.002 \)). Collagen-induced TXB\(_2\) biosynthesis was reduced by 52.0 ± 53.0% (residual concentrations: 29.8 [11.7, 59] ng/ml) and by 94.0 ± 10.0% (residual concentrations: 2.68 [0.27, 6.07] ng/ml) in subgroup A1 and A2, respectively (\(P = 0.0013 \)).

However, when aspirin (100 \(\mu \)M) was added in vitro, platelet aggregation in patients from subgroup A1 was further reduced, reaching values that were fully comparable to those measured in subgroup A2 (Table 2). TX biosynthesis was suppressed by >90% in both subgroups (residual levels: 0.62 [0.52, 0.92] and 0.15 [0.05, 0.22] ng/ml in subgroup A1 and A2, respectively).

Interestingly, collagen-induced platelet aggregation measured at \(T_2 \) in patients from the two subgroups correlated with serum

Figure 2: Effect of two aspirin doses (100 and 325 mg, Group A and Group B, respectively) on platelet thromboxane B\(_2\) (TXB\(_2\)) biosynthesis. TXB\(_2\) biosynthesis induced by collagen (4 \(\mu \)g/ml) was measured in PRP before (\(T_0 \)) and 3 (\(T_1 \)) and 5 days (\(T_2 \)) after surgery. Inset: TXB\(_2\) levels measured in collagen-stimulated PRP of HS and VRF patients, before (\(T_0 \)) and after 100 mg aspirin for 5 days (\(T_2 \)). Individual TXB\(_2\) levels and medians are reported. Platelet TXB\(_2\) biosynthesis was reduced in patients after CABG by 94.7% and 98.6% (Group A and B, respectively, at \(T_2 \)), whereas in HS and VRF patients it was reduced by more than 99%.

For personal or educational use only. No other uses without permission. All rights reserved.
TXB₂ (\(r = 0.49, P = 0.009 \)). This finding suggests that residual levels of serum TXB₂ >15 ng/ml after 100 mg aspirin for 5 days may predict residual platelet activity, as detected by aggregation.

Effect on 11-dehydro-thromboxane B₂ excretion

Aspirin significantly reduced 11-dh TXB₂ levels in both groups of patients (-55.3%, Group A and -55.2%, Group B) (Fig. 3), without difference between doses (\(P = 0.14 \) at T₂). Levels measured in patients after CABG at T₂ were much higher than those measured in HS and VRF patients: in these latter groups, 11-dh TXB₂ levels decreased from 31.2 [25, 68.2] to 8.3 [4.5, 9.8] and from 75.5 [73.5, 77.8] to 17.1 [14.1, 22.5] ng/mmol creatinine, respectively (\(P<0.001 \) vs Group A patients for both control groups).

Similarly to what was observed for 11-dh TXB₂, aspirin reduced LPS-induced TX biosynthesis both at T₁ and at T₂, with no difference between doses (20.6% and 22.2% at T₁ for Group A and B, respectively) (Fig. 4).

Effect on platelet function detected by PFA-100®

CEPI-CT detected at T₂ was <193 sec in 23 (82%) out of 28 and in 11 (52%) out of 21 patients from Group A and Group B, respectively (\(P = 0.02 \), Fig. 5), whereas it was >300 sec for all HS and VRF patients. Interestingly, CEPI-CT and TXB₂ levels in collagen-stimulated PRP were inversely correlated (\(r = -0.36, P = 0.004 \)). No changes of CT were detected when the CADP cartridge was used (data not shown).

Discussion

Results show that the incidence of residual platelet activity detected in patients who received 100 mg aspirin after CABG surgery can be reduced by increasing the dose. The insufficient TX inhibition was highlighted by measuring either platelet- or serum-derived TX levels or by PFA-100®, but not by the other methods used. This indicates that different methods yield different results in monitoring platelet function during aspirin treatment, rendering them not interchangeable, as already reported in patients with stable coronary artery disease (9) and, more recently, in normal subjects (11, 12).

Our data indicate that 100 mg aspirin treatment for 5 days did not adequately inhibit TX biosynthesis in 46% of patients after CABG.
known that the bioavailability of enteric coated aspirin is lower and more variable than that of immediate-release aspirin (20, 21), other mechanisms may account for the impaired platelet inhibition observed after CABG. First, the surgical intervention itself

Figure 4: Distribution of cyclooxygenase-2 (COX-2)-dependent TXB2 levels measured in lipopolysaccharide (LPS)-cultured whole blood of patients after CABG. COX 2-dependent TXB2 levels were measured in LPS-cultured whole blood of patients before (T0) and 3 (T1) and 5 days (T2) after aspirin treatment (100 mg, Group A, n = 24, and 325 mg, Group B, n = 18). Individual TXB2 levels (difference between LPS-stimulated and unstimulated samples) and medians are reported. TXB2 levels were similarly reduced by the two doses in patients after CABG (-20.6%, Group A, and -22.2%, Group B, at T2).

CABG surgery. This finding is in agreement with a previous report showing that, in the same clinical setting, platelet inhibition by the same aspirin dose and formulation (enteric coated) is compromised within several days after the intervention (13). Although it is known that the bioavailability of enteric coated aspirin is lower and more variable than that of immediate-release aspirin (20, 21), other mechanisms may account for the impaired platelet inhibition observed after CABG. First, the surgical intervention itself

Figure 5: Distribution of closure times (CT) measured by PFA-100. CT was assessed by Collagen/Epinephrine (CEPI)-cartridge before (T0) and 3 (T1) and 5 days (T2) after aspirin treatment (100 mg, Group A, and 325 mg, Group B). Individual values are reported.
may play a critical role; indeed, it has been previously shown that CABG causes platelet activation (22–24) and increases platelet turnover (14). Secondly, it has been reported that platelet activation results in de novo-COX-1 synthesis and TXB₂ production despite the block of preformed COX-1 by aspirin (25). This mechanism, together with the entry of new platelets containing active COX-1 into circulation, may counteract the complete and persistent suppression of TX biosynthesis by aspirin. Finally, an impaired interaction between aspirin and platelet COX-1 has been proposed to occur in patients after CABG (13). In vitro addition of aspirin to PRP samples, however, further reduced either platelet TX biosynthesis or aggregation indicating that COX-1/aspirin interaction was not altered in these patients.

Contrary to what was observed with platelet- or serum-derived TXB₂, platelet aggregation was not further reduced by increasing the dose, fully in agreement with data by Cornelissen et al. obtained in the same clinical setting (26). This discrepancy supports the hypothesis that signalling pathways, independent of COX-1, may contribute to the residual platelet aggregation observed in these patients (26). In the present study, both aspirin doses reduced aggregation only partially (~50%) and to a lower extent than that detected in VRF patients not undergoing surgery (~80%). This finding suggests that aspects other than the phenotypic variance related to cardiovascular risk factors (27) may account for the aspirin failure to fully prevent collagen-induced platelet aggregation in patients after CABG, and strengthens the role of surgical intervention.

A poor correlation between aspirin non-responsiveness defined by serum or platelet-derived TXB₂ and platelet aggregation was observed in patients after CABG, as already reported in patients with stable coronary artery disease (9) and in normal subjects (11, 12). However we found a significant correlation between TXB₂ and the degree of reduction of platelet aggregation in patients who received 100 mg aspirin for 5 days. In this respect, even if indirectly, data indicate that serum TXB₂ levels may be predictive for residual platelet activity, as reflected by aggregometry.

Although our results support the scanty relationship among different assays used to monitor platelet function during aspirin treatment, both the measurement of TXB₂ levels (either platelet- or serum-derived, that we show to be highly correlated) and platelet function assessed by PFA-100® documented the insufficient inhibition of platelet reactivity in patients receiving 100 mg aspirin. Of note, in our study, PFA-100® yielded the higher frequencies of persistent platelet reactivity despite treatment, confirming data recently reviewed (28). This finding, observed also in other clinical settings (10), suggests that PFA-100® measures non-thromboxane-related residual platelet activity which, in patients after CABG, is most likely increased by the surgical stress. Although this assay is not COX-1 specific, it may carry prognostic information in aspirin-treated cardiovascular patients (29–31).

The effect of aspirin on TX biosynthesis was also assessed through the measurement of the urinary excretion of 11-dh TXB₂ that is considered an index of global TX synthesis. Both aspirin doses similarly reduced 11-dh TXB₂ excretion in patients after CABG, with the extent of reduction being lower (55% in both groups) than that measured in HS or VRF patients (>70%).

Our finding indicates that levels of TX derived from sources other than platelets were scarcely affected by aspirin in patients after CABG, as in other clinical settings (32, 33). Moreover, we show that the measurement of platelet TXB₂ and urinary 11-dh TXB₂ were not equally effective in assessing the anti-platelet effect of aspirin, supporting previously reported data (34).

The inflammatory response to surgery and healing may activate COX-2. The possible contribution of this pathway to the global TX levels was therefore assessed by ex vivo-experiments carried out in LPS-cultured whole blood. Aspirin treatment reduced COX-2-dependent TX synthesis. As already observed for urinary 11-dh TXB₂, however, TXB₂ levels measured after aspirin treatment were neither negligible nor reduced even by the higher dose. This finding indicates that aspirin-insensitive TX biosynthesis from extra-platelet source may occur in patients after CABG and supports the critical role of COX-2 induced in response to a local inflammatory milieu, as in other clinical settings (35).

In conclusion, although limited by the small number of patients and the short clinical follow-up, our results indicate that 100 mg enteric coated aspirin caused insufficient platelet TX inhibition and that this effect could be overcome by increasing the dose.

The clinical significance of the present functional data deserves confirmation from properly powered trials with an adequate follow up.

Acknowledgements

The authors are indebted to Dr. Fabrizio Veglia from the Unit of Biostatistics, Centro Cardiologico Monzino, for his invaluable advice in performing the statistical analyses.

References

© Schattauer 2010

Thrombosis and Haemostasis 103.3/2010