The use of amlodipine, but not of P-glycoprotein inhibiting calcium channel blockers is associated with clopidogrel poor-response

Ankie M. Harmsze1,2; Karen Robijns2; Jochem W. van Werkum2; Nicole J. Breet3; Christian M. Hackeng4; Jurrien M. ten Berg3; Hendrik J. T. Ruven2; Olaf H. Klungel1; Anthonius de Boer2; Vera H. M. Deneer1
1Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands; 2Division of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands; 3Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands; 4Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein, The Netherlands

Summary
Clopidogrel is a prodrug that has to be converted in vivo to its active metabolite by cytochrome (CYP)P450 iso-enzymes. As calcium channel blockers (CCBs) are inhibitors of CYP3A4, concomitant use of these drugs might play a role in the wide inter-individual variability in the response to clopidogrel. However, some CCBs also have strong inhibitory effects on the drug transporter P-glycoprotein (Pgp), which mediates clopidogrel’s intestinal absorption. It was the aim of this study to evaluate the effect of co-administration of Pgp-inhibiting and non-Pgp-inhibiting CCBs on on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective percutaneous coronary intervention (PCI). In a total of 623 consecutive patients undergoing elective PCI treated with clopidogrel and aspirin, platelet reactivity to 5 and 20 μM adenosine diphosphate (ADP) and clopidogrel poor-response (defined as > 70% platelet aggregation to 20 μM ADP) were evaluated by light transmittance aggregometry. A total of 222 patients (35.6%) were on CCB treatment, of which 98 used Pgp-inhibiting CCBs (verapamil, nifedipine, diltiazem, barnidipine) and 124 patients used the non-Pgp-inhibiting CCB amlodipine. Adjusted mean ADP-induced on-clopidogrel platelet reactivity was significantly higher in both users of Pgp-inhibiting CCBs and amlodipine as compared to CCB non-users (all p<0.05). However, only the use of amlodipine was significantly associated with a 2.3-fold increased risk of clopidogrel poor-response. This study demonstrates that concomitant use of Pgp-inhibiting CCBs and amlodipine increases on-clopidogrel platelet reactivity. Only amlodipine was associated with clopidogrel poor-response. The drug-drug interaction between clopidogrel and amlodipine might be more clinically relevant as compared to P-glycoprotein-inhibiting CCBs.

Keywords
Clopidogrel, drug-drug interaction, percutaneous coronary intervention, platelet reactivity, calcium channel blockers, P-glycoprotein, CYP3A4

Introduction
Dual antiplatelet therapy with clopidogrel and aspirin has become standard treatment after percutaneous coronary interventions (PCI) (1). The intestinal efflux of clopidogrel is dependent on P-glycoprotein (Pgp). Pgp-mediated efflux reduces the intracellular accumulation of clopidogrel, thereby diminishing its efficacy (2). Clopidogrel is a prodrug that needs to be converted in vivo to generate its active metabolite. Conversion into the active compound occurs in a two-step process, in which the hepatic cytochrome (CYP) P450 iso-enzymes CYP1A2, CYP2B6, CYP2C9, CYP2C19 and CYP3A4,5 are involved (3). The active thiol metabolite irreversibly inhibits the adenosine diphosphate (ADP) P2Y12 receptor on the platelets surface (4, 5). Platelet response to clopidogrel is highly variable between individuals (6). The activity of the CYP-enzymes and overexpression of Pgp are thought to influence the antiplatelet effect of clopidogrel. Genetic variants of genes encoding CYP iso-enzymes and Pgp are associated with diminished platelet inhibition during clopidogrel treatment and some with an increased risk of atherothrombotic events (3,7–16). Drugs that are substrates or inhibitors of the same CYP iso-enzymes or Pgp might also influence the antiplatelet effect of clopidogrel. Calcium channel blockers (CCBs) have been used for many years to treat angina pectoris, hypertension and other car-
Harmsze et al. Effect of calcium channel blockers on on-clopidogrel platelet reactivity

© Schattauer 2010

Thrombosis and Haemostasis 103.5/2010

Platelet function assays

The magnitude of on-clopidogrel platelet reactivity was assessed by light transmission aggregometry (LTA) using the APACT 4004 four-channel light transmission aggregometer (LABiTec, Ahrensburg, Germany). Samples were centrifuged for 10 min at 150 g to obtain native platelet rich plasma (PRP). Maximal platelet aggregation (defined as the maximum extent of platelet aggregation achieved in any time during the run of 10 minutes) was quantified in non-adjusted PRP after stimulation with 5 and 20 μM ADP. The magnitude of on-clopidogrel platelet reactivity in whole blood, expressed as P2Y12 Reaction Units (PRU), was measured with the VerifyNow P2Y12 Point-of-Care test cartridge system (Accumetrics, San Diego, CA, USA), as described previously (21, 22). LTA is considered to be the gold standard for determining the effects of antiplatelet therapy on platelet function, but logistical demands make it difficult to use in daily practice. The VerifyNow P2Y12 assay® is a point-of-care platelet function assay which has the specific purpose to rapidly inform the clinician about the magnitude of platelet inhibition that is achieved with the individual antiplatelet regimen (23). All measurements were completed within 2 hours of blood collection.

Methods

Study design

In a prospective observational study we measured on-clopidogrel platelet reactivity in a large cohort of consecutive patients undergoing elective PCI. Prior to PCI and before heparinisation, blood was drawn from the femoral arterial sheath in 3.2% citrate tubes for platelet function testing. The first 10 ml of free-flowing blood were discarded.

Blood sampling

Prior to PCI and before heparinisation, blood was drawn from the femoral arterial sheath in 3.2% citrate tubes for platelet function testing. The first 10 ml of free-flowing blood were discarded.

Continuous analysis

Continuous variables were expressed as mean ± standard deviation (SD) or median with interquartile range [IQR]. Categorical variables were expressed as frequencies and percentages. For baseline characteristics, continuous data were analysed by analysis of variance (ANOVA) and categorical data by chi-square test when appropriate. Kolmogorov-Smirnov test was used to test for normal distribution of continuous data.

ANOVA and, in case of a significant result, LSD (least significant difference) post-hoc tests, were used to analyse mean differences in normally distributed on-clopidogrel platelet reactivity between treatment groups. Multivariate linear regression was used to adjust for confounding factors (gender, age, body mass index, diabetes mellitus, prior myocardial infarction, hypertension, current smoking, left ventricular ejection fraction [LVEF] <45%, duration of clopidogrel administration before the coronary stent implantation [in days] and the use of proton pump inhibitors). For determining the influence of concomitant use of the CCBs on the clopidogrel responder status, crude and adjusted odds ratios (ORs) with their 95% confidence interval (CI) were calculated using logistic regression analysis. A poor-responder was defined as a clopidogrel-treated subject with more than 70% aggregation using 20 μM ADP (LTA) or with VerifyNow P2Y12 PRU value of more than 235 (24, 25). Sample size calculation for the present study was based on results of the study of Siller-Matula et al. in which an approximately 25% relative increase of ADP-induced platelet aggregation was observed in the group of patients on concomitant CCB treatment (18). Under the assumption that approximately 35% of the patients is on concomitant CCB treatment, CCB treatment is as-

diovascular diseases (17). Two recent studies suggested that CCBs reduce the pharmacodynamic response to clopidogrel and increase the risk of adverse atherothrombotic events by the inhibition of CYP3A4 (18, 19). However, within the class of CCBs, there are substantial pharmacokinetic differences. All CCBs are substrates and inhibitors of CYP3A4 (20). Importantly, some CCBs (nifedipine, nicardipine, barnidipine, felodipine, lercidipine, verapamil and diltiazem) also have strong inhibitory effects on Pgp activity (“Pgp-inhibiting CCBs”) (20). Other CCBs like nimodipine, nisoldipine, isradipine and amlodipine exhibit no inhibitory effects on Pgp activity (“non-Pgp-inhibiting CCBs”) (20). Due to these differences within the class of CCBs, different clinical relevance of drug interactions with clopidogrel are expected. Siller-Matula et al. and Gremmel et al. did not perform comparative analyses within the class of CCBs due to small sample size.

The aim of this study was to investigate the impact of co-administration of different CCBs on on-clopidogrel platelet reactivity in a large cohort of patients on dual antiplatelet therapy undergoing elective PCI.

Statistical analysis

© Schattauer 2010

Thrombosis and Haemostasis 103.5/2010
associated with a 25% relative increase (from 52% ± 25 to 65% ± 25) of ADP-induced platelet aggregation and a power of 90% with a two-sided α-value of 0.05, a sample size of at least 60 patients in each CCB-treatment group and 180 non-users of CCBs (overall sample size of 300 patients) was required. A p-value <0.05 was considered statistically significant. Statistical analysis was performed using SPSS software (version 15.0.1 for Windows; SPSS Chicago, IL, USA).

Results

Patient characteristics

A total of 623 consecutive patients who were on maintenance therapy with aspirin and clopidogrel were enrolled in this study. From the study population, 222 (35.6%) patients were on CCB treatment at the time of platelet function testing. Among them, 98 patients used Pgp-inhibiting CCBs (verapamil 320 mg [n=1], diltiazem [n=57, mean dose 213.4 ± 52.5 mg], barnidipine 10 mg [n=2] and nifedipine [n=38, 43.0 ± 15.2 mg]). The remaining 124 patients were treated with amlodipine (mean dose 5.5 ± 1.5 mg), which does not inhibit Pgp. The median duration time [IQR] of CCB treatment before platelet function testing was 48 days [294 ± 15.2 days]. The baseline characteristics of the study population according to CCB treatment are shown in Table 1. In univariate analysis, significant differences between the groups regarding the variables age (p=0.011), hypertension (p<0.0001) and the use of beta-blockers (p<0.0001) were observed.

On-clopidogrel platelet reactivity and CCB treatment

Figure 1 shows that users of amlodipine and Pgp-inhibiting CCBs exhibited higher on-clopidogrel platelet reactivity as compared to CCB non-users. On-clopidogrel platelet reactivity differed statistically significant between the three treatment groups (p<0.0001 for all platelet function assays). Pairwise comparisons showed that the mean ADP-induced on-clopidogrel maximal platelet aggregation was significantly higher in users of amlodipine as compared to CCB non-users (41.9% ± 13.1 vs. 36.7% ± 13.5, for 5 μM, p<0.0001 and 60.3% ± 13.2 vs. 54.5% ± 14.2, for 20 μM ADP, p<0.0001, Fig. 1). After adjustment for the confounding variables, the use of amlodipine remained significantly associated with an increased on-clopidogrel platelet reactivity (mean difference: 4.4% [95% CI 1.9–9.6, p=0.003], for 5 μM ADP, and 5.0% [95% CI 2.1–7.9, p=0.001], for 20 μM). Likewise, the mean on-clopidogrel platelet reactivity when measured with VerifyNow P2Y12 assay was also significantly higher in users of amlodipine as compared to patients without CCB treatment (224.1 ± 73.4 vs. 191.1 ± 74.5, p<0.0001, Fig. 1). The adjusted mean difference in VerifyNow P2Y12 PRU results between patients on amlodipine and CCB non-users was 26.9, 95% CI 11.9–36.2, p<0.0001.

Pairwise comparisons showed that the mean ADP-induced on-clopidogrel platelet reactivity for users of Pgp-inhibiting CCBs was also significantly higher as compared to patients without CCB treatment (Fig. 1). After adjustment for confounders, the use of Pgp-inhibiting CCBs remained significantly associated with an increased on-clopidogrel platelet reactivity (mean difference: 5.7% [95% CI 1.9–9.6, p=0.003], for 5 μM ADP, and 3.7% [95% CI 0.3–7.7, p=0.035] for 20 μM). However, platelet reactivity according to the VerifyNow P2Y12 assay did not differ between users of

<table>
<thead>
<tr>
<th>Variable</th>
<th>No CCB, n=410</th>
<th>Pgp-inhibiting CCBs (diltiazem, nifedipine, verapamil, barnidipine), n=98</th>
<th>Amlodipine, n=124</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62.5 ± 10.6</td>
<td>65.7 ± 10.0</td>
<td>64.7 ± 10.8</td>
<td>0.011</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>312 (76.1)</td>
<td>77 (78.6)</td>
<td>84 (67.7)</td>
<td>0.11</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
<td>27.1 ± 3.9</td>
<td>27.0 ± 3.7</td>
<td>27.3 ± 3.6</td>
<td>0.81</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>72 (17.6)</td>
<td>17 (17.3)</td>
<td>23 (18.5)</td>
<td>0.96</td>
</tr>
<tr>
<td>Current smokers, n (%)</td>
<td>52 (12.7)</td>
<td>6 (6.1)</td>
<td>9 (7.3)</td>
<td>0.07</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>303 (73.9)</td>
<td>86 (87.8)</td>
<td>108 (87.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypercholesterolemia, n (%)</td>
<td>346 (84.4)</td>
<td>83 (84.7)</td>
<td>94 (76.4)</td>
<td>0.11</td>
</tr>
<tr>
<td>Family history of CAD, n (%)</td>
<td>251 (62.1)</td>
<td>59 (61.5)</td>
<td>75 (62.0)</td>
<td>0.99</td>
</tr>
<tr>
<td>Previous MI, n (%)</td>
<td>191 (47.3)</td>
<td>54 (56.8)</td>
<td>50 (41.3)</td>
<td>0.08</td>
</tr>
<tr>
<td>LVEF <45%,</td>
<td>66 (16.1)</td>
<td>13 (13.3)</td>
<td>18 (14.5)</td>
<td>0.33</td>
</tr>
<tr>
<td>Proton pump inhibitors, n (%)</td>
<td>94 (22.9)</td>
<td>29 (29.6)</td>
<td>34 (27.4)</td>
<td>0.30</td>
</tr>
<tr>
<td>CYP3A4-metabolised statins, n (%)</td>
<td>280 (68.3)</td>
<td>61 (62.2)</td>
<td>81 (65.3)</td>
<td>0.48</td>
</tr>
<tr>
<td>Beta-blockers, n (%)</td>
<td>349 (85.1)</td>
<td>62 (63.3)</td>
<td>114 (91.9)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Table 1: Baseline demographics and clinical characteristics of the study cohort. Data are expressed as mean value ± SD or number of patients n (%); P-value: ANOVA for continuous variables and chi-square test for categorical variables between the three groups, CAD, coronary artery disease; MI, myocardial infarction; LVEF, left ventricular ejection fraction; CCB, calcium channel blocker; Pgp, P-glycoprotein.
Pgp-inhibiting CCBs and CCB non-users (204.5 ± 73.2 vs. 191.1 ± 74.5, p=0.11, Fig. 1). No significant differences in platelet reactivity between users of Pgp-inhibiting CCBs and amlodipine were found in pairwise comparisons (Fig. 1).

Clopidogrel poor-response and CCB treatment

Based on LTA measurements, 97 patients (15.6% of the total cohort) were classified as clopidogrel poor-responders. The proportion of clopidogrel poor-responders was significantly higher in users of amlodipine compared to patients without CCB treatment (25.6% vs. 12.9%), resulting in an odds ratio of 2.3 (95% CI 1.4–3.9, p=0.001, Table 2). This association remained significant after the adjustment for confounders: adjusted OR (ORadj): 2.3, 95% CI 1.4–3.9, p=0.001. According to the VerifyNow P2Y12 assay, the use of amlodipine was associated with clopidogrel poor response (OR: 2.4, 95% CI 1.6–3.7, p<0.0001 and ORadj: 2.3, 95% CI 1.5–3.6, p<0.0001). In the group of patients on Pgp-inhibiting CCBs, 14.6% was classified as clopidogrel poor-responders. No association between the risk of clopidogrel poor-response and the use of Pgp-inhibiting CCBs was found (OR: 1.2, 95% CI 0.6–2.2, p=0.66 and ORadj 0.9, 95% CI 0.4–2.2, p=0.92, Table 2). In concordance with results from the LTA, no association between concomitant use of Pgp-inhibiting CCBs and clopidogrel poor-response as measured with the VerifyNow P2Y12 assay was found (OR: 1.0, 95% CI 0.4–2.3, p=0.91 and ORadj 1.5, 95% CI 0.8–2.9, p=0.24).

Table 2: Odds ratios (OR) for poor-responder status according to CCB treatment

<table>
<thead>
<tr>
<th>CCB</th>
<th>Poor-responder</th>
<th>Crude OR [95% CI]</th>
<th>P-value</th>
<th>Adjusted OR [95% CI]</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amlodipine</td>
<td>LTA – ADP</td>
<td>2.3 [1.4–3.9]</td>
<td><0.0001</td>
<td>2.3 [1.4–3.9]</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>VerifyNow – PRU</td>
<td>2.4 [1.6–3.7]</td>
<td><0.0001</td>
<td>2.3 [1.5–3.6]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Pgp-inhibiting CCBs</td>
<td>LTA – ADP</td>
<td>1.2 [0.6–2.2]</td>
<td>0.66</td>
<td>0.9 [0.4–2.2]</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>VerifyNow – PRU</td>
<td>1.3 [0.8–2.1]</td>
<td>0.33</td>
<td>1.5 [0.8–2.8]</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Discussion

In the present study we assessed the influence of the concomitant use of different CCBs on on-clopidogrel platelet reactivity in a large cohort of patients on dual antiplatelet therapy undergoing elective PCI. Co-administration of amlodipine, which does not inhibit Pgp, was associated with increased on-clopidogrel platelet reactivity. Furthermore, the use of amlodipine was associated with a 2.3-fold increased risk of clopidogrel poor-response using the predefined criteria for poor-response as more than 70% platelet aggregation to 20 μM ADP (LTA) or a VerifyNow P2Y12 PRU-value of more than 235. In other studies, this parameter is associated with adverse cardiovascular events, including stent thrombosis (24, 25). The use of the Pgp-inhibiting CCBs diltiazem, verapamil *ANOVA with LSD post-hoc tests.*
mil, barnidine and nifedipine was found to increase on-clopidogrel platelet reactivity as measured with LTA. However, no influence was observed when platelet reactivity was measured with the VerifyNow P2Y12 assay and importantly, this subclass of CCBs was not associated with an increased risk of clopidogrel poor-response.

The inhibitory effect of CCBs on the platelet response to clopidogrel is thought to be caused at the level of CYP3A4 (18). Clopidogrel is a prodrug, which requires hepatic biotransformation by CYP3A4 to generate the active metabolite (3). As all CCBs are substrates and inhibitors of CYP3A4 (20), concomitant use could inhibit clopidogrel’s metabolism. The intestinal absorption of clopidogrel is limited by P-glycoprotein by increasing the intestinal efflux (2). The CCBs verapamil, diltiazem, nifedipine and barnidine are potent inhibitors of Pgp and have been shown to increase the responsiveness to several drugs e.g. digoxin and anticancer agents, by this mechanism (17, 26–29). Inhibition of Pgp by the concomitant use of Pgp-inhibiting CCBs may lead to a decreased intestinal efflux of clopidogrel, thereby increasing clopidogrel plasma concentrations and counteracting the effect of CCB-induced CYP3A4 inhibition. Therefore, concomitant use of Pgp-inhibiting CCBs might have less clinical relevance than co-administration of anlodipine. However, the clinical use of diltiazem and verapamil is not completely comparable with the use of amiodipine. Amiodipine is solely used in the treatment of hypertension and coronary artery disease while diltiazem and verapamil are also used for rate control in atrial fibrillation. However, sub-analysis within the group of Pgp-inhibiting CCBs showed that nifedipine and barnidine, drugs that have the same clinical use as amiodipine, also have no influence on clopidogrel poor-response. In the study of Siller-Matula et al., co-administration of CCBs was found to be associated with a diminished pharmacodynamic response to clopidogrel and with an increased risk of adverse cardiovascular events (18). The authors made no distinction between the different CCBs but the majority of their study population used amiodipine. These results are consistent with our observation that the use of amiodipine is associated with clopidogrel poor-response. In our study, amiodipine was the only representative of the CCB subclass with no inhibiting effect on Pgp. Other non-Pgp-inhibiting CCBs like nimodipine, nifedipine and isradipine, were not studied. There are some limitations of this study. First, in this observational study, we cannot completely exclude possible bias by various risk factors and patient characteristics although the multivariable adjustment models confirmed the primary analyses. Furthermore, we did not investigate the influence of CCBs on plasma concentrations of clopidogrel’s active metabolite nor on clinical outcome. An additional limitation is that we did not adjust for the carriage of genetic variants of e.g. CYP2C9, CYP2C19 and Pgp, which are found to play a role in the antiplatelet properties of clopidogrel.

In conclusion, concomitant use of Pgp-inhibiting CCBs and amiodipine increases on-clopidogrel platelet reactivity. However, only amiodipine was associated with a higher risk of clopidogrel poor-response. These findings may have important implications with regard to which type of CCB is preferred in clopidogrel-treated patients.

References

