Insight Receptor activation of nuclear factor kB ligand (RANKL) increases the release of neutrophil products associated with coronary vulnerability

RANK(L)-ing biomarkers as surrogates for coronary calcium score

Esther Lutgens1,2; Tim Leiner3; Christian Weber1,4

1Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University (LMU), Munich, Germany; 2Department of Medical Biochemistry, Academic Medical Center Amsterdam, University of Amsterdam, the Netherlands; 3Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands; 4Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, the Netherlands

Correspondence to:
Esther Lutgens
Department of Medical Biochemistry
Academic Medical Center Amsterdam
Amsterdam, The Netherlands
E-mail: E.Lutgens@amc.uva.nl

Received: November 8, 2011
Accepted: November 9, 2011
Prepublished online: December 12, 2011
doi:10.1160/TH11-11-0775
Thromb Haemost 2012; 107: 3

Coronary calcium deposition, expressed as the coronary calcium score (CCS), is a precisely quantifiable and reproducible measure of underlying coronary artery disease which has been shown in large prospective studies to be strongly associated with the risk of future cardiovascular events (1).

Despite the strong predictive value of CCS, radiation exposure and financial costs remain significant concerns. Therefore, discovery of biomarkers as surrogates for CCS would be highly beneficial. Classical biomarkers for cardiovascular disease such as high sensitivity C-reactive protein (hsCRP), FVIIIc, fibrinogen and soluble intercellular adhesion molecule (sICAM), were found to be associated with CCS (2). Other inflammatory markers like interleukin-6 and tumour necrosis factor-α often failed to show a correlation, suggesting that the inflammatory markers used to predict coronary heart disease fail to predict coronary artery calcification.

In the present issue of Thrombosis and Haemostasis, Quercioli et al. describe the highly relevant finding that serum levels of receptor activation of nuclear factor kB ligand (RANKL), together with age, hypertension and serum matrix metalloproteinase (MMP)-8 and -9 levels are positively correlated with CCS. RANKL, RANK together with other bone matrix regulatory proteins like bone morphogenetic protein (BMP)-2 and BMP-4, as well as osteopontin (OP) and osteonectin (ON), are highly expressed in calcified atherosclerotic lesions, and play an important role in mediating plaque calcification (3). In addition, some of these bone matrix regulatory proteins, especially RANKL, have also been identified as important players in the immune system and in inflammation.

Not surprisingly, Quercioli et al. found that RANKL was able to activate the degranulation of MMP-8 and -9 from neutrophils in culture, via the signalling intermediates ERK1/2 and Akt signalling, but only in suspension, which corresponds to neutrophils in the circulation.

These data show that RANKL is a promising surrogate marker for CCS. The biomarker has a good potential to improve current CHD risk prediction models, since RANKL is involved in bone and matrix turnover within atherosclerotic plaques, is able to induce MMP-8 and -9 in neutrophils and plays an important role in inflammation, all processes crucial in the pathogenesis of atherosclerosis. However, the population studied in this paper is small, and larger clinical trials should be initiated to unequivocally prove that serum levels of RANKL are a reliable surrogate marker for CCS.

Conflict of interest
None declared.

References