A putative inhibitory mechanism in the tenase complex responsible for loss of coagulation function in acquired haemophilia A patients with anti-C2 autoantibodies

Tomoko Matsumoto; Keiji Nogami; Kenichi Ogiwara; Midori Shima
Department of Pediatrics, Nara Medical University, Kashihara, Japan

Summary
Acquired haemophilia A (AHA) is caused by the development of factor (F)VIII autoantibodies, demonstrating type 1 or type 2 inhibitory behaviour, and results in more serious haemorrhagic symptoms than in congenital severe HA. The reason(s) for this remains unknown, however. The global coagulation assays, thrombin generation tests and clot waveform analysis, demonstrated that coagulation parameters in patients with AHA-type 2 inhibitor were more significantly depressed than those in patients with moderate HA with similar FVIII activities. Thrombin and intrinsic FXa generation tests were significantly depressed in AHA-type 1 and AHA-type 2 compared to severe HA, and more defective in AHA-type 1 than in AHA-type 2. To investigate these inhibitory mechanism(s), anti-FVIII autoantibodies were purified from AHA plasmas. AHA-type 1 autoantibodies, containing an anti-C2 ESH4-epitope, blocked FVIII(a)-phospholipid binding, whilst AHA-type 2, containing an anti-C2 ESH8-epitope, inhibited thrombin-catalysed FVIII activation.

Introduction
Factor (F)VIII, a protein deficient or defective in individuals with severe congenital bleeding disorder, haemophilia A (HA), functions as a cofactor in the tenase complex, responsible for phospholipid (PL)-dependent conversion of FX to FXa by FIXa (1). FVIII circulates as a complex with von Willebrand factor (VWF) that protects and stabilises the cofactor (2). FVIII is synthesised as a single chain molecule consisting of 2,332 amino acid residues, and is arranged into three domains, A1-A2-B-A3-C1-C2. FVIII is processed into a series of metal ion-dependent heterodimers, generating a heavy chain (HCh) consisting of A1 and A2 domains together with heterogenous fragments of partially proteolysed B domain linked to a light chain (LCh) consisting of A3, C1, and C2 domains (3). The catalytic efficiency of FVIII in the tenase complex is markedly enhanced by conversion into FVIIIa, by limited proteolysis by thrombin (and FXa) (4). Both enzymes proteolise the HCh at Arg372 and Arg740, and produce 50-kDa A1 and 40-kDa A2 subunits. The 80-kDa LCh is cleaved at Arg1689 generating a 70-kDa subunit. Proteolysis at Arg372 and Arg1689 is essential for generating FVIIIa cofactor activity (5). FVIIIa activity is down-regulated by serine proteases including activated protein C, following cleavage at Arg536 (4, 6).

FVIII inhibitors develop as alloantibodies (alloAbs) in severe HA patients multi-treated with FVIII concentrates, and also as autoantibodies (autoAbs) in previously normal individuals, particularly in elderly people, patients with autoimmune diseases, pregnant women, and women in the postpartum period. The appearance of autoAbs usually results in severe haemorrhagic symptoms in what is described as acquired HA (AHA). Antibodies of this nature inhibit FVIII activity (FVIII:C) either completely or incompletely at saturating concentrations, corresponding to type 1.

The coagulation function in a reconstituted AHA-model containing exogenous ESH4 or ESH8 was more abnormal than in severe HA. The addition of anti-FIX antibody to FVIII-deficient plasma resulted in lower coagulation function than its absence. These results support the concept that global coagulation might be more suppressed in AHA than in severe HA due to the inhibition of FIXa-dependent FX activation by steric hindrance in the presence of FVIII-anti-C2 autoantibodies. Additionally, AHA-type 1 inhibitors prevented FVIIIa-phospholipid binding, essential for the tenase complex, whilst AHA-type 2 antibodies decreased FXa generation by inhibiting thrombin-catalysed FVIII activation. These two distinct mechanisms might, in part, contribute to and exacerbate the serious haemorrhagic symptoms in AHA.

Keywords
Acquired haemophilia A, anti-C2 autoantibody, thrombin generation, tenase complex, FXa generation
or type 2 inhibitors, respectively (7). Epitopes of autoAbs and haemophilic alloAbs have been found commonly in the A2, C2, or both domains of the FVIII molecule (8). Most autoAbs appear to be directed against a single domain rather than both domains, with anti-C2 antibodies being more common than anti-A2 antibodies (8). In contrast, most haemophilic alloAbs appear to recognise both domains. Anti-C2 type 1 antibodies inhibit FVIIIa binding to PL membranes (9, 10). The FVIII binding to PL and VWF is mutually exclusive (11), and antibodies have been shown to block binding to both PL and/or VWF (12, 13). Furthermore, anti-C2 type 2 antibodies interfere with FVIII activation mediated by thrombin and/or FXa (9, 10, 14).

Accurate measurements of blood coagulation in vitro are essential for the complete clinical assessment of clotting function. Conventional one-stage clotting tests (prothrombin time and activated partial thromboplastin time; APTT) are useful for routine laboratory examination, but they only partially reflect coagulation in a non-physiological environment and are based on the classical concepts of intrinsic and extrinsic cascade mechanisms. Discrepancies between coagulant activity and clinical phenotype in patients are often apparent, therefore. Recently, interest has focused on global coagulation assays, developed from a better understanding of the coagulation reaction involving tissue factor (TF)-triggered, cell-based mechanisms generating thrombin on activated platelets (15). Global tests of this nature such as the thrombin generation test (TGT) and clot waveform analysis have been established (16–18). We have further reported that our optimisation of these techniques provided a quantitative evaluation of clotting function in patients with very low levels of FVIII:C, and that various parameters are closely correlated with clinical phenotype (18–20).

According to a retrospective survey, the severity of AHA is not directly associated with FVIII:C level (21), and AHA patients frequently present with life- or limb-threatening bleeding episodes that appear to be more pronounced than in congenital HA, although FVIII:C levels are similar in both. Hence, the clinical phenotype is often severe in AHA patients with moderate or even mildly deficient levels of FVIII:C. The reason(s) for this discrepancy in AHA remains to be clarified, however.

In the present study, patients with moderate-type HA (M-group), severe-type HA (S-group), AHA with type 1 (type 1) and with type 2 inhibitors (type 2) were investigated. We have demonstrated for the first time that coagulation function, assessed using global coagulation assays, was significantly more depressed in AHA with anti-C2 autoAbs compared to congenital HA, particularly in the S-group. We propose that one possibility for this difference is that the complex of FVIII and anti-C2 autoAbs indirectly interferes with FIXa-dependent FX activation due to steric hindrance. In addition, type 1 anti-C2 autoAbs prevented FVIII(a)-PL binding mechanisms, essential for the tenase complex, and type 2 anti-C2 autoAbs decreased FXa generation by inhibiting FVIII activation mediated by thrombin (and/or FXa). These distinct mechanisms might be associated with the exacerbated haemorrhagic symptoms in AHA.

Materials and methods

Reagents

An anti-FVIII A2 mAbJR8 was obtained from JR Scientific Inc. (Woodland, CA, USA). Anti-FVIII C2 mAbs, ESH4 and ESH8, recognising residues 2303–2332 and residues 2248–2285, respectively (12, 22), were purchased from American Diagnostica Inc. (Stamford, CT, USA). An anti-C2 alloAbs was purified from plasma obtained in a severe HA patient with inhibitor. An anti-FIX mAb3A6 was prepared as previously reported (23). The biotinylation of mAb was prepared using N-hydroxysuccinimido-biotin (Pierce, Rockford, IL, USA). Recombinant lipidated TF (Innovin®; Dade Behring, Marburg, Germany), ellagic acid (Sysmex, Kobe, Japan), thrombin-specific fluorogenic substrate (Bachem, Bubendorf, Switzerland), and thrombin calibrator (Thrombinscope, Maastricht, Netherlands) were obtained from the indicated vendors. Human thrombin, FV, FIXa, FXa (Hematologic Technologies, Inc. Essex, VT, USA), recombinant hirudin (Calbiochem, San Diego, CA, USA), FXa substrate S-2222 and thrombin substrate S-2238 (Chromogenix, Milano, Italy), and plasma-derived FVIII-deficient plasma (George King Biomedical. Overland Park, KS, USA) were commercially purchased. PL vesicles containing 10% phosphatidylserine, 60% phosphatidylcholine, 30% phosphatidylethanolamine (Sigma) were prepared as previously described (24).

Proteins

Purified recombinant (r)FVIII preparations (Kogenate FS®) were a generous gift from Bayer Corp. Japan (Osaka, Japan). The A1, A2, HCh, LCh, and thrombin-cleaved LCh fragments were isolated from recombinant FVIII (25). The rA3 and rC2 proteins were purified as previously reported (26, 27). VWF was purified from FVIII/VWF concentrates (28). SDS-PAGE of the isolated subunits followed by staining with GelCode Blue Stain Reagent (Pierce) showed >95% purity (data not shown). Protein concentrations were measured using the Bradford method (29).

Patients’ plasmas

Whole blood was obtained by venipuncture into tubes containing 1:9 volume of 3.8% (w/v) trisodium citrate. After centrifugation for 15 minutes (min) at 1,500 g, the plasmas were stored at −80°C, and thawed at 37°C immediately prior to the assays. Inhibitor titres were determined using the Bethesda assay (30). The kinetic pattern (type 1 or type 2 behaviour) of FVIII inactivation by anti-FVIII autoAbs was determined using one-stage clotting assays (7). Patients’ plasmas were obtained from moderate-type HA (M-group, n=10, FVIII:C: 2.1 ± 0.9 IU/dl), severe-type HA (S-group, n=15, FVIII:C: <0.2 IU/dl), type 1 AHA (type 1, n=9, FVIII:C: <0.2 IU/
Matsumoto et al. Coagulation function and inhibitory mechanism in AHA patients.

Table 1: Properties of plasma samples and anti-C2 autoAbs obtained from AHA patients.

<table>
<thead>
<tr>
<th>Case</th>
<th>FVIII:C (IU/dl)</th>
<th>FVIII:Ag (IU/dl)</th>
<th>Inhibitor (BU/ml)</th>
<th>Kinetic pattern</th>
<th>Recognition</th>
<th>Coagulant factor</th>
<th>Epitope*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><0.2</td>
<td>1.0</td>
<td>30.7</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><0.2</td>
<td><1.0</td>
<td>1,100</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><0.2</td>
<td><0.2</td>
<td>48.8</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2,(A2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><0.2</td>
<td><1.0</td>
<td>110</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><0.2</td>
<td>1.1</td>
<td>32.7</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2,(A2)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><0.2</td>
<td><1.0</td>
<td>135</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><0.2</td>
<td>6.5</td>
<td>33.1</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><0.2</td>
<td><0.2</td>
<td>65.3</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><0.2</td>
<td>11.2</td>
<td>36.8</td>
<td>type 1</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.1</td>
<td>1.0</td>
<td>8.2</td>
<td>type 2</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.2</td>
<td>1.0</td>
<td>33.0</td>
<td>type 2</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.2</td>
<td>29.0</td>
<td>7.9</td>
<td>type 2</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.4</td>
<td>1.0</td>
<td>860</td>
<td>type 2</td>
<td>FVIII</td>
<td>C2,(A2)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.5</td>
<td>2.8</td>
<td>300</td>
<td>type 2</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6.4</td>
<td>14.1</td>
<td>1.2</td>
<td>type 2</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.0</td>
<td>10.0</td>
<td>31.7</td>
<td>type 2</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3.2</td>
<td>2.4</td>
<td>10.6</td>
<td>type 2</td>
<td>FVIII</td>
<td>C2</td>
<td></td>
</tr>
</tbody>
</table>

Type 1 or Type 2 antibodies inhibit FVIII:C either completely or incompletely at saturating concentrations. *: Cases 3, 5, and 13 reacted very faintly with the A2 domain.

dl, 167 ± 175 BU/ml) and type 2 AHA (type 2, n=8, FVIII:C: 2.0 ± 1.9 IU/dl, 202 ± 120 BU/ml). The present studies were performed using blood samples obtained from patients diagnosed by our research group (Table 1) and enrolled in the Nara Medical University Hemophilia Program. All samples were obtained after informed consent following local ethical guidelines.

Clot waveform analysis

FVIII(a) activity was measured in one-stage clotting assay using FVIII-deficient plasma. APTT measurements were also performed using the MDA-IT™ Hemostasis System (Trinity Biotech, Dublin, Ireland) with commercially available APTT reagent. The clot waveforms obtained were computer-processed using the commercial kinetic algorithm (18). The minimum value of the first derivative (min1), defining the maximum velocity of change in light transmission, was calculated as an indicator of the maximum velocity of coagulation achieved. The second derivative of the transmittance data (d²T/dt²) reflects the acceleration of the reaction at any given time point. The minimum value of the second derivative (min2) was also calculated as an index of the maximum acceleration of the reaction achieved. Since the minimum of min1 and min2 are derived from negative changes, we expressed the data as [min1] and [min2], respectively. The clot time was defined as the time until the start of coagulation.

Thrombin generation test (TGT)

The calibrated automated TGT (Thrombinscope) was performed as previously described (16, 20). Sample plasma (80 μl) was pre-incubated for 10 min with 20 μl of trigger reagent containing TF, PL, and ellagic acid (final concentration (f.c.) 0.5 μM, 4 μM, and 0.3 μM, respectively). Measurements were then commenced after the addition of 20 μl reagent containing CaCl₂ and fluorogenic substrate (f.c. 16.7 mM and 2.5 mM, respectively). The development of fluorescent signals was monitored using a Fluoroskan Ascent microplate reader (Thermo Fisher Scientific, Boston, MA, USA). Data analyses were performed using the manufacture’s software, and the standard parameters; peak thrombin, time to peak, and endogenous thrombin potential (ETP), were derived.

FXa generation assay

FXa generation was performed at 37°C in 20 mM HEPES, pH 7.2, 150 mM NaCl, 5 mM CaCl₂, and 0.01% Tween 20 (HBS) containing 0.1% bovine serum albumin (BSA).

Purified reagent-based assays

(i) FVIIIa/FXa-dependent FXa generation (32) – FVIII (0.05 nM) was activated by thrombin (1 nM), and this reaction was terminated after 1 min by the addition of hirudin (0.5 unit/ml). After dilution, FXa generation was initiated by the addition of FIXa (1 nM), FX (150 nM), and PL (20 μM).

(ii) FVIII/FXa-dependent FXa generation – FXa generation was initiated by the addition of FIXa (1 nM), FX (150 nM), PL (20 μM), and hirudin (0.5 unit/ml) to FVIII (0.05 nM) and continued for 30 min. In both assays, aliquots were removed at the

Thrombosis and Haemostasis 107.2/2012 © Schattauer 2012
indicated times to assess initial rates of product formation, and added to tubes containing EDTA. Initial rates of FIXa generation were determined at 405 nm after the addition of S-2222.

Plasma-based assays
A commercial COATEST®SP FVIII kit (Chromogenix) was used according to the manufacturer’s instructions. Plasma samples were diluted five fold in HBS containing 0.1% BSA and were mixed with FIXa/FX/PL. FIXa generation was initiated by the addition of CaCl$_2$, and the initial rates were determined at 405 nm after the addition of S-2765. Hirudin (1 unit/ml) was added to the samples to stop positive-feedback activation mediated by the generated thrombin.

FVIII competitive binding assay
FVIII (25 nM) in 10 mM Tris and 150 mM NaCl, pH 7.4, was immobilised onto microtiter wells at 4°C overnight. After blocking with 5% BSA at 37°C for 2 hours (h), serial dilutions of anti-C2 autoAbs together with constant concentrations (10 μg/ml) of anti-C2 mAbESH4 or mAbESH8 were added to each well, and were further incubated for 2 h. Bound mAbESH4 or mAbESH8 was detected after 2-h incubation with horseradish peroxidase-conjugated anti-mouse IgG and the addition of o-phenylenediamine. The amount of nonspecific IgG binding without FVIII was <3% of the total signal. Specific binding was estimated by subtracting the amount of non-specific binding.

ELISA for FVIII binding to immobilised VWF or PL
Binding of FVIII to VWF or PL were examined as previously reported (28). VWF (40 nM) or PL (20 μM) was immobilised onto microtiter wells. After blocking with 5% BSA, FVIII (1 nM) was added onto the immobilised VWF well or PL well. Bound FVIII was detected using biotinylated anti-A2 mAbJR8 and horseradish peroxidase-labeled streptavidin. The amount of nonspecific IgG binding without FVIII was <5% of the total signal. Specific binding was estimated by subtracting the amount of non-specific binding.

FVIII cleavage by thrombin or FIXa
FVIII (10 nM) was preincubated with the indicated concentrations of anti-C2 autoAbs for 1 h. The mixtures were then incubated at 37°C with thrombin (5 nM) or FIXa (0.3 nM) together with PL (20 μM) in HBS-buffer containing 5 mM CaCl$_2$. Aliquots were removed at the indicated times and the reactions were terminated and prepared for SDS-PAGE by adding SDS and boiling for 3 min. SDS-PAGE was performed using 8% gels at 150 V for 1 h, followed by Western blotting. Protein bands were probed using the indicated mAb followed by goat anti-mouse peroxidase-linked secondary mAb. Signals were detected using enhanced chemiluminescence (PerkinElmer Life Science, Boston, MA, USA). Densitometric scans were quantitated using Image J 1.38.

Statistical analysis
The significant of the differences between each of AHA groups, congenital HA groups and samples with anti-C2 mAbs were determined by paired Student’s t-test analysis.

Results
Global blood coagulation in moderate HA (M-group) and AHA-type 2
AHA-type 2 patients exhibited more severe haemorrhagic symptoms than the HA M-group, although similar levels of FVIII:C were recorded in one-stage clotting assays. The TGT has been recently developed to evaluate global coagulation function based on the principles of cell-based clotting, and we utilised this technique in this study. Although TF at low concentration is generally used as a trigger in the TGT, sensitive differences in coagulation function at low levels of FVIII:C (<=3 IU/dl) are not seen (20). We have reported, however, that the addition of small amounts of ellagic acid to the mixtures containing the low TF-trigger TGT had little effect on the lag-time (representing activation of the FVIIa/TF-induced extrinsic pathway) but provided higher peak thrombin and ETP measurements (representing the subsequent activation of the intrinsic pathway) (20). The modified TGT, therefore, reflected global coagulation sensitivity in the intrinsic pathway as well as the extrinsic, cell-based pathway, and enabled evaluation of coagulation function at very low levels of FVIII:C (low limit; <0.4 IU/dl).

This TGT was utilised in the present study and plasma samples were mixed with TF (0.5 pM), PL (4 μM), and ellagic acid (0.3 μM), followed by the addition of CaCl$_2$, and fluorogenic substrate (20). Representative thrombograms (upper panels) and the derived parameters (lower panels) in the M-group and type 2 AHA are illustrated in ►Figure 1A. The levels of peak thrombin and ETP obtained in type 2 were significantly decreased relative to those in the M-group, by ~2.6-fold (type 2/M-group: 61 ± 30/159 ± 50 nM, p<0.01; panel a) and by ~2.2-fold (1,310 ± 810/2,848 ± 620 nM, p<0.01; panel c), respectively. The time to peak was markedly prolonged by ~1.9-fold (32.2 ± 5.8/17.1 ± 2.0 min, p<0.01; panel b).

Global coagulations parameters in both groups were further evaluated by clot waveform analysis using the MDA-II™ system (18). Unlike the TGT, this analysis reflects the process of fibrin formation. The data obtained from these waveforms are illustrated in ►Figure 1B. The clot times in type 2 were prolonged by
Figure 1: TGT and clot waveform analysis on patient’s plasmas in the M-group and type 2 AHA. A) TGT-assay; upper panels: Plasma samples obtained from the M-group patients and type 2 AHA were preincubated with TF (0.5 pM), PL (4 μM) and ellagic acid (0.3 μM), followed by the addition of CaCl₂. Thrombin generation was measured as described in Methods, and representative TGT curves are illustrated. NP; control normal plasma. Lower panels: The peak thrombin (a), time to peak (b), and ETP (c) were derived from the TGT data obtained in upper panels. B) Clot waveform analysis; The APTT of patients’ plasmas obtained from M-group and type 2 AHA were measured using the MDA-II™ system. The parameters clot time (a), |min1| (b), and |min2| (c) were derived from the clot waveform data as described in Methods. In all instances, results are shown as mean ± SD from at least five separate experiments. **p<0.01.
Figure 2: TGT and endogenous intrinsic FXa generation in the patient's plasmas in the S-group, type 1, and type 2 AHA.

A) TGT-assay; Upper panels: Patients’ plasmas obtained from the S-group, type 1 AHA, and type 2 AHA were preincubated with TF (0.5 pM), PL (4 μM) and ellagic acid (0.3 μM), followed by the addition of CaCl2. Thrombin generation was measured as described in Methods, and representative TGT curves are illustrated. NP: control normal plasma. Lower panels: The parameters of peak thrombin (a), time to peak (b), and ETP (c) were obtained from the TGT data shown in upper panels. B) Endogenous intrinsic FXa generation; Patients’ plasmas obtained from S-group, type 1, and type 2 AHA were preincubated with FIXa/FX/PL mixture in the presence of hirudin, followed by the addition of CaCl2 as described in Methods. FXa was measured using commercial reagents. The initial velocity rates of endogenous FXa generation are illustrated. In all instances, results are shown as mean ± SD from at least five separate experiments. The value of FVIII:C 1.0 IU/dl as a reference value was 5.04 ± 0.20 x10⁻³. *p<0.05, **p<0.01, NS; no significance.
~2.0-fold (121 ± 44/61 ± 8 seconds, p<0.05; panel a), compared to those in the M-group, and both [min1] and [min2] values were significantly decreased by ~2.1-fold, (1.1 ± 0.5/2.3 ± 0.3, p<0.01; panel b) and by ~3.1-fold (0.06 ± 0.03/0.19 ± 0.04, p<0.01; panel c), respectively. These results demonstrated that blood coagulation in type 2 was markedly more defective than in the M-group, despite similar FVIII:C levels (2.1 ± 0.9/2.0 ± 1.9 IU/dl, respectively). The findings were in keeping with the more severe haemorrhagic symptoms observed in type 2 relative to the M-group of patients.

Comparisons of coagulation function in severe HA (S-group) and AHA

More severe haemorrhagic symptoms are evident in the AHA patients compared to those in the S-group (FVIII:C<0.2%). These clinical differences were examined, therefore, using the TGT in these patients. Representative thrombograms from the S-group, type 1, and type 2 are illustrated in Figure 2A (upper panels). The derived parameters are shown in the lower panels. The levels of peak thrombin and ETP in type 1 were markedly decreased by ~2-fold (type 1/S-group: 35.2 ± 14/68.0 ± 8.2 nM, p<0.01, panel a) and by ~1.5-fold (770 ± 310/1,115 ± 381 nM, p<0.05, panel c), respectively. The time to peak in type 1 was significantly prolonged by ~1.6-fold (36.7 ± 6.5/23.0 ± 3.0 min, p<0.01, panel b), compared to those in S-group. Similarly, in type 2, the time to peak was significantly delayed compared to that in S-group (32.5 ± 6.0/23.0 ± 3.0 min, p<0.05, panel b). These findings again provided strong evidence that the more serious clinical symptoms in AHA were related to the differences in global coagulation profiles, even though the FVIII:C in AHA were similar or slightly higher level than those in S-group. Surprisingly, thrombin generation in type 1 was moderately, but significantly more defective than in type 2 (p<0.05). It appeared, therefore, that coagulation function in the three groups was depressed in the order type 1, type 2, S-group.

Intrinsic FXa generation, corresponding to the upstream process of thrombin generation, was further examined to clarify the mechanism(s) of exquisitely defective thrombin generation in AHA. Plasma samples from each of the three groups were incubated with FIXa/FX/PL mixtures in the presence of hirudin (to eliminate thrombin reactions). CaCl2 was added and endogenous intrinsic FXa generation was measured using the chromogenic assay. The initial rate of FXa generation was decreased in the order type 1, type 2, S-group (0.53 ± 0.18/0.88 ± 0.41/1.81 ± 0.78 x10−4) with significant differences (Fig. 2B). These results were consistent with those obtained in the TGT, and further suggested that the discrepancies in coagulation function between AHA and S-group HA could be attributed to a significant decrease in the expression of intrinsic tenase complex activity (FVIIa/FIXa/FX/PL).

Properties of anti-FVIII autoAbs in AHA

To further investigate the mechanism(s) by which the coagulation function in AHA was more defective than in the S-group, anti-FVIII autoAbs purified from AHA plasmas were characterised. FVIII levels and the basic properties of these autoAbs are summarised in Table 1. Other coagulation factor activities in all cases were within the normal range (data not shown). SDS-PAGE and Western blotting using purified coagulation proteins revealed that all autoAbs reacted with FVIII alone. In particular, they all strongly reacted with the C2 domain, although some additionally reacted very faintly with the A2 domain.

The C2 domain is associated with interactions with VWF and PL (33). We examined, therefore, the effects of anti-C2 autoAbs on FVIII binding to VWF and PL in ELISA. In all type 1 cases examined the antibodies dose-dependently inhibited FVIII binding to VWF (by 64–87%) and PL (by 60–79%) at the maximum concentration of 50 μg/ml (Table 2), and the inhibitory effects were dose-dependent (data not shown). In contrast, in all type 2 cases the antibodies did not affect binding. Insufficient amounts of purified F(ab')2 were obtained from some type 1 cases (cases 7–9) and type 2 cases (cases 16–17), however, and these individuals could not be investigated.

Different effects of anti-C2 autoAbs on thrombin-catalysed FVIII reactions

The conversion of FVIII to FVIIIa by thrombin is essential for the expression of intrinsic tenase activity (5), and one particular FVIII binding-region has been located within the C2 domain (34). We examined, therefore, the effects of anti-C2 autoAbs on thrombin-catalysed FVIII activation. FVIII (0.05 nM) was preincubated with varying amounts of AHA autoAbs. After incubation with thrombin for 1 min, the reaction was stopped by the addition of hirudin, and the reactant mixtures were diluted to completely exclude the inhibitory effects of autoAbs. FXa generation was initiated by the addition of FIXa (1 nM) and FX (150 nM) (Fig. 3A, upper panel). Results are summarised in Table 2. All type 2 antibodies (50 μg/ml) decreased the peak levels of thrombin-mediated FVIII activation by 66–94%, and the inhibitory effects were dose-dependent. Type 1 autoAbs little affected these reactions (by <5%), however. In these experiments, the presence of anti-C2 autoAbs may have interfered with FXa generation and indirectly moderated thrombin-catalysed FVIII activation. To investigate this, therefore, we examined direct thrombin-catalysed FVIII cleavage in the presence of anti-C2 autoAbs. Proteolytic cleavage at Arg272 and Arg1689 is essential for generating FVIIla activity (5). FVIII (10 nM) was preincubated with anti-C2 autoAbs (≤100 μg/ml), and was then activated by thrombin (5 nM), followed by SDS-PAGE and Western blotting using anti-A2 mAbJR8 (Fig. 3A, lower panels). All type 2 antibodies delayed the appearance of intact A2 during early-timed reactions (panel a). The inhibitory effects were dose-dependent by 61–73% (at 50 μg/ml), and were consistent with inhibition of...
cleavage at Arg\(^{372}\) (panel b). Similarly, inhibition of cleavage at Arg\(^{1689}\) (by 35–80\%) was observed with all type 2 antibodies (Table 2). These cleavage patterns appeared to be little affected (by <5\%) by type 1 antibodies, consistent with the results of FVIII activation.

FXa-catalysed FVIII activation was also investigated, as a target for inhibitory effect of anti-C2 autoAbs. It was difficult, however, to assess FVIIIa-dependent FXa generation in the presence of purified FXa as an activator of FVIII. Consequently, FVIII-dependent FXa-catalysed FXa generation was evaluated. This assay depended on the positive-feedback mechanism(s) by which FXa-catalysed FXa generation mediated FVIII activation. FVIII (0.05 \(\mu\)M) was preincubated with varying amounts of autoAbs, followed by the addition of FXa (1 \(\mu\)M), FX (150 \(\mu\)M), PL (20 \(\mu\)M), and hirudin to initiate FXa generation (Fig. 3B). All type 2 antibodies (50 \(\mu\)g/ml) diminished the level of FXa generation by 59–95\%, and the inhibitory effects were dose-dependent (upper panel). To directly examine FXa-catalysed FVIII proteolysis, FVIII (10 \(\mu\)M) was mixed with autoAbs (50 \(\mu\)g/ml) prior to incubation with FXa (0.5 \(\mu\)M) and PL (20 \(\mu\)M) (Fig. 3B, lower panels). All type 2 antibodies inhibited cleavage at Arg\(^{372}\) by 54–79\% in a timed-dependent manner, and the inhibitory effects were dose-dependent (panels a and b). Cleavage at Arg\(^{1689}\) was also completely inhibited (by >95\%) by all type 2 antibodies (Table 2). The inhibitory effects of type 1 antibodies could not be determined precisely, however, since these antibodies directly inhibited FVIII(a)-PL interaction.

Table 2: Properties of anti-C2 autoAbs obtained from AHA patients.

<table>
<thead>
<tr>
<th>Case</th>
<th>Inhibition of FVIII binding to VWF PL (%)</th>
<th>Activation Cleavage (%)</th>
<th>Inhibition of thrombin-catalysed reaction of FVIII</th>
<th>Cleavage (%)</th>
<th>Inhibition of FXa-catalysed reaction of FVIII</th>
<th>Cleavage (%)</th>
<th>Competition of FVIII binding to ESH4 ESH8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VWF PL Activation Cleavage (%)</td>
<td>Arg372 Arg1689 (%)</td>
<td>Activation Cleavage (%)</td>
<td>Arg372 Arg1689 (%)</td>
<td>Activation Cleavage (%)</td>
<td>Arg372 Arg1689 (%)</td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>67</td>
<td>72</td>
<td><5</td>
<td><5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>86</td>
<td>64</td>
<td><5</td>
<td><5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>60</td>
<td><5</td>
<td><5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>63</td>
<td><5</td>
<td><5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>69</td>
<td><5</td>
<td><5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>87</td>
<td>79</td>
<td><5</td>
<td><5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>84</td>
</tr>
<tr>
<td>Type 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><5</td>
<td><5</td>
<td>84</td>
<td>70</td>
<td>80</td>
<td>68</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td><5</td>
<td><5</td>
<td>81</td>
<td>69</td>
<td>72</td>
<td>92</td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td><5</td>
<td><5</td>
<td>66*</td>
<td>64</td>
<td>35</td>
<td>63*</td>
<td>72</td>
</tr>
<tr>
<td>13</td>
<td><5</td>
<td><5</td>
<td>83</td>
<td>61</td>
<td>40</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td><5</td>
<td><5</td>
<td>73</td>
<td>63</td>
<td>68</td>
<td>83</td>
<td>79</td>
</tr>
<tr>
<td>15</td>
<td><5</td>
<td><5</td>
<td>94</td>
<td>73</td>
<td>80</td>
<td>59</td>
<td>54</td>
</tr>
</tbody>
</table>

Reactions of anti-C2 autoAbs were examined as described in Methods. Data represent the inhibitory effects (\%) at concentrations of 50 \(\mu\)g/ml for all cases except for case 12* (70 \(\mu\)g/ml). Insufficient amounts of F(ab')2 were available from cases 7–9 (Type 1) and cases 16–17 (Type 2). n.d.: not determined.

Coagulation function in AHA-model reconstituted with FVIII/anti-C2 mAb

The inhibitory properties of anti-C2 type 1 and type 2 autoAbs obtained in the present study were similar to those reported by Meeks et al. (9, 10). To investigate whether the pivotal C2 epitopes of our autoAbs overlapped with those of anti-C2 mAbESH4 or mA-ESH8, representing typical type 1 or type 2 behaviour, respectively, competitive inhibition for FVIII binding were examined. All type 1 autoAbs significantly competed with ESH4 binding to FVIII by 63–84\%, but competed with ESH8 binding by <5–15\%. In contrast, all type 2 autoAbs competed with ESH8 binding to FVIII by 64–86\%, but competed with ESH4 binding by <5–19\%. These findings indicated that anti-C2 type 1 and type 2 autoAbs contained the C2 epitopes identified in ESH4 and ESH8, respectively (Table 2).

We compared, therefore, the coagulation parameters in in vitro models of AHA, constructed with exogenous anti-C2 mAbs (ESH4 and ESH8), with those of the S-group. FVIII (10 IU/dl) was preincubated with ESH4 (80 \(\mu\)g/ml) or ESH8 (20 \(\mu\)g/ml), and residual FVIII:C was adjusted to <0.2 and ∼2 IU/dl, respectively, similar to the levels in AHA patients. The mixtures were added to FVIII-deficient plasma and utilised in the TGT-assay (Fig. 4A and B). The time to peak in the AHA-models with ESH4 and ESH8 (48.8 ± 2.0/47.6 ± 2.4 min, p<0.01/p<0.05, respectively) were prolonged compared to the S-group (43.0 ± 1.6 min), reflecting decreased coagulation function in the presence of ESH4/ESH8. These findings

References:

1. Meeks et al. (9, 10).
2. ESH4 and ESH8 were obtained from AHA.
3. The inhibitory effects (%) at concentrations of 50 \(\mu\)g/ml for all cases except for case 12* (70 \(\mu\)g/ml).
4. Insufficient amounts of F(ab')2 were available from cases 7–9 (Type 1) and cases 16–17 (Type 2).
5. n.d.: not determined.
Figure 3: Effects of type 2 anti-C2 autoAbs on thrombin- or FXa-catalyzed activation of FVIII. A) Thrombin reaction: Upper panel: FVIII (0.05 nM) was activated by thrombin (1 nM) for 1 min. After the addition of hirudin and dilution, FXa generation was initiated by the addition of FIXa (1 nM), FX (150 nM), and PL (20 μM). Various concentrations of type 2 autoAbs were preincubated with FVIII prior to adding thrombin, followed by adding hirudin to terminate the thrombin reaction. The rate of FXa generation without anti-C2 autoAb was regarded as 100%. In all instances, results are shown as mean from at least five separate experiments. Lower panels: (a) FVIII (10 nM) was mixed with type 2 autoAbs (100 μg/ml) for 1 h, followed by incubation with thrombin (5 nM) for the indicated times. Samples were run on 8% gel followed by Western blotting using anti-A2 mAb JR8. Band density of A2 at 1 min after adding thrombin with normal F(ab’)_2 was regarded as 100%. (b) FVIII (10 nM) was mixed with various concentrations of type 2 autoAbs for 1 h, followed by incubation with FXa (0.5 nM) and PL (20 μM) for 5 min. Samples were run on 8% gel followed by Western blotting using anti-A2 mAb. Band density of A2 after adding thrombin in the absence of type 2 autoAbs was regarded as 100%. B) FXa reaction; Upper panel: FVIII (0.05 nM) was incubated with various concentrations of type 2 autoAbs for 1 h. FXa generation was initiated by the addition of FIXa (1 nM), FX (150 nM), PL (20 μM) in the presence of hirudin for 30 min. The rate of endogenous intrinsic FXa generation in the absence of autoAb was regarded as 100%. In all instances, results are shown as mean from at least five separate experiments. Lower panels: (a) FVIII (10 nM) was mixed with type 2 autoAbs (50 μg/ml) for 1 h, followed by incubation with FXa (0.5 nM) and PL (20 μM) for the indicated times. Samples were run on 8% gel followed by Western blotting using anti-A2 mAb. Band density of A2 at 5 min after FXa incubation with normal F(ab’)_2 was regarded as 100%. (b) FVIII (10 nM) was mixed with various concentrations of type 2 autoAbs for 1 h, followed by incubation with FXa (0.5 nM) and PL (20 μM) for 5 min. Samples were run on 8% gel followed by Western blotting using anti-A2 mAb. Band density of A2 by FXa in the absence autoAbs was regarded as 100%. The symbols used are: ○; case 10, ●; case 11, ◇; case 12, ■; case 13, Δ; case 14, ▲; case 15, ◊; normal F(ab’)_2.
were in keeping with those observed using anti-C2 AHA plasmas in thrombin and FXa generation assays (see Fig. 2A and B). No significant differences were observed between ESH4 and ESH8 in these assays, however.

Effect of anti-FIX mAb on TGT in FVIII-deficient plasma

Our findings suggested that the additional decrease of coagulation function in AHA relative to S-group could be attributed to the markedly decreased activity of the intrinsic tenase complex. Since intrinsic tenase activity in S-group HA depends on FIXa-catalysed FX activation, we hypothesised that inhibition of FIXa-induced FX activation could have mediated the significantly greater decrease in tenase activity observed in AHA. We examined, therefore, the effects of anti-FIX mAb on thrombin generation in FVIII-deficient plasmas (Fig. 5). Control experiments demonstrated that the addition of anti-FVIII alloAb (10 BU/ml) to FVIII-deficient plasmas resulted in similar TGT parameters compared to its absence, confirming complete FVIII deficiency in the plasma samples. Furthermore, the addition of anti-C2 autoAbs to FVIII-deficient plasma little affected thrombin generation (data not shown), confirming that the effects of anti-C2 autoAbs in AHA patients depended on the presence of FVIII.

In addition, anti-FIX mAb3A6 (10 BU/ml) was incubated with FVIII-deficient plasmas, and TGT assays performed as above. Peak thrombin levels in the presence of anti-FIX mAb were significantly more decreased (∼1.3-fold) than its absence (8.0 ± 0.5/10.4 ± 0.6 nM, p<0.05, Fig. A). Similarly, ETP was more depressed (∼1.5-fold) in the presence of anti-FIX mAb than its absence (100 ± 10/144 ± 15 nM, p<0.05, Fig. 5C), and the time to peak was prolonged by ∼1.3-fold (32.7 ± 1.9/25.0 ± 1.8 min, p<0.05, Fig. 5B). These findings were similar to those obtained with native AHA plasmas, and the results were consistent with the concept that the exacerbated haemorrhagic symptoms in AHA with anti-C2 autoAbs, compared to S-group, could be related, in part, to indirect...
Figure 4: Coagulation function in in vitro AHA-models reconstituted with FVIII and anti-C2 mAb. A) FVIII (0.1 nM) was mixed with anti-C2 mAb ESH4 (80 μg/ml) or mAbESH8 (20 μg/ml) for 1 h prior to incubation with FVIII-deficient plasma. Samples were mixed with TF (0.5 pM), PL (60 μM), and ellagic acid (0.3 μM), followed by the addition of CaCl2. Thrombin generation was measured as described in Methods. Representative TGT curves were illustrated. B) The time to peak obtained from the TGT is shown in (A). Data are shown as mean ± SD for data from at least five separate experiments. *p<0.05, **p<0.01, NS; no significance.

Discussion

The reason(s) why haemorrhagic symptoms in AHA are more severe than those in severe HA, although FVIII:C levels are similar, have not been clarified. The present findings suggest for the first time, that the mechanisms involved in these circumstances could possibly be attributed to the inhibition of FIXa-mediated FX activation by disturbances (steric hindrance) on the tenase complex in the presence of FVIII-anti-C2 autoAb complexes.

AHA antibodies with anti-A2 epitopes were not available for study, and all anti-FVIII autoAbs used in this study recognised the C2 domain. All anti-C2 Type 1 antibodies blocked FVIII binding to VWF and PL, but did not affect FVIII activation by thrombin. In
In contrast, all anti-C2 type 2 antibodies inhibited FVIII activation by thrombin, but did not affect FVIII binding to VWF and PL. These anti-C2 properties were similar to those reported by Meeks et al. (9, 10), and were representative of the classical and non-classical anti-C2 antibodies respectively. In addition, PL concentrations did not affect the difference between both groups in thrombin and FXa generation and binding assays (data not shown). SDS-PAGE and Western blotting analysis revealed that the inhibition of thrombin-catalysed FVIII activation by anti-C2 Type 2 was attributed to delayed cleavage at Arg372 and Arg1689. It was of additional interest that mAbESH8 with type 2 epitopes did not affect FVIII cleavage by thrombin at Arg372 (and Arg1689) (data not shown, [35]), and the findings might have reflected a novel inhibitory mechanism for anti-C2 autoAbs, although inhibition caused by the coincident presence of an anti-A2 autoAb (37) could not be excluded.

We have recently demonstrated an interaction between the C2 domain (residues 2228–2240) and the FIXa Gla domain in the tenase complex (38). In the current studies, however, neither type 1 nor type 2 anti-C2 autoAbs inhibited C2 binding to FIXa (data not shown), suggesting that these antibodies had little direct affect on FVIIIa-FIXa interactions in the tenase complex.

Thrombin generation in AHA was significantly less than that in severe HA. Furthermore, intrinsic FXa generation in AHA, reflecting processes upstream of thrombin generation, was decreased relative to that in severe HA. The anti-C2 antibodies little inhibited prothrombinase activity (data not shown), it appeared, therefore, that critical differences between AHA and severe HA in the intrinsic tenase complex contributed to the clinical findings, and that these differences centered on the effects of anti-C2 autoAbs on FVIIIa, FIXa, FX, and PL interactions. In normal plasmas, free FVIIIa is generated from FVIII/VWF by thrombin, followed by FVIIa/FIXa-dependent FX activation on PL micelles (A). In severe HA, FIXa alone generates FXa from FX very slowly (panel B). In both type 1 and type 2 AHA, anti-C2 IgG-FVIIIa complexes interfere with FIXa-catalysed FX activation on PL by steric hindrance. In type 1 cases, this complex fails to bind to PL, and the tenase assembly is unstable (C). In type 2 cases, although anti-C2 IgG significantly blocks thrombin-induced FVIII activation, small amounts of the FVIIIa-IgG complex bind to PL, and consequently trace amounts of tenase assembly is formed (D).

Figure 6: A putative coagulation mechanism for the intrinsic tenase complex in patients from the S-group, anti-C2 type 1, and type 2 AHA. In normal plasmas, free FVIIIa is generated from FVIII/VWF by thrombin, followed by FVIIa/FIXa-dependent FX activation on PL micelles (A). In severe HA, FIXa alone generates FXa from FX very slowly (panel B). In both type 1 and type 2 AHA, anti-C2 IgG-FVIIIa complexes interfere with FIXa-catalysed FX activation on PL by steric hindrance. In type 1 cases, this complex fails to bind to PL, and the tenase assembly is unstable (C). In type 2 cases, although anti-C2 IgG significantly blocks thrombin-induced FVIII activation, small amounts of the FVIIIa-IgG complex bind to PL, and consequently trace amounts of tenase assembly is formed (D).
What is known about this topic?

- Acquired haemophilia A (AHA) is caused by the development of factor (F)VIII autoantibodies (autoAbs).
- AHA results in more serious haemorrhagic symptoms than in congenital severe HA, but the reason(s) remain unknown, however.

What does this paper add?

- Coagulation functions, assessed using the global coagulation assays, were significantly more depressed in AHA with anti-C2 autoAbs relative to congenital HA.
- As one of putative mechanism(s), we proposed that the FVIII/anti-C2 autoAb complexes appeared to interfere with FXa-dependent FX activation indirectly due to steric hindrance.
- In addition, the anti-C2 autoAbs with type 1 behavior prevented FXa-mediated activation of FIXa, and those with type 2 behaviour decreased the FXa generation by inhibiting thrombin-catalysed FIXa activation, suggesting that these distinct mechanisms could be associated with the exacerbated haemorrhagic symptoms in AHA.

complexed with FVIIIa, indirectly interfere with the association between FIXa and FX on PL-membrane surfaces by steric hindrance. Consequently, FIXa-mediated activation of FX in these patients is depressed to a greater extent than in severe HA (Fig. 6C and D).

The assays of thrombin and FXa generation showed that critical coagulation functions in AHA type 1 were lower than those in type 2, and experiments using AHA-models containing anti-C2 mAbs with type 1 and 2 behaviour (ESH4 and ESH8) demonstrated a similar tendency. Both native anti-C2 type 1 autoAbs and ESH4 inhibit FXIII binding to VWF and PL, and this inhibition of VWF-binding would lead to significantly decreased levels of FXIII:C (2). Furthermore, although FVIII-IgG complexes can be completely activated by thrombin, the tenase complex failed to bind to PL-membranes in these circumstances, and the conformation of this complex would likely be extremely unstable (Fig. 6C). In contrast, our experiments with native anti-C2 type 2 autoAbs and ESH8 demonstrated that FXIII binding to VWF or PL was little inhibited. It appeared, therefore, that these autoAbs significantly inhibited FXIII activation by thrombin, but that the relatively small amounts of FVIII-IgG complex formed bound to PL, facilitating trace amounts of tenase assembly (Fig. 6D). Nevertheless, as with type 1 antibodies, indirect disturbances (steric hindrance) mediated by FVIIIa-IgG complexes would have inhibited FIXa-induced FX activation. We speculate, therefore, that differences in the inhibitory mechanisms between type 1 and type 2 antibodies might have contributed to the observations that coagulation parameters were depressed in the order type 1, type 2, and S-group patients. Further studies are required to clarify these mechanisms.

In view of our findings that the excessive decrease in coagulation function in AHA could be due to indirect inhibition of FIXa-dependent FX activation, it might be expected that the clinical severity in patients with severe FIX-deficiency (hemophilia B, HB) might be more pronounced than in those with severe HA. In this context, it is also noteworthy that thrombin generation in vitro in FIXa-deficient plasmas with undetectable FIX:C (the lowest limit of detection in our laboratory is <0.2 IU/dl (18)) was significantly lower than in severe HA (unpublished observation). It is well known, however, that the clinical symptoms in severe HA are more marked than in severe HB (40, 41). The reasons for these findings remain unclear, but it may be that additional mechanism(s) underlie the AHA phenotype. For example, FX may be sequestered in a non-functional complex with FVIII-anti-C2 autoAbs in AHA. Further investigations are required to clarify these mechanisms.

The current investigations have introduced a putative mechanism for the excessive clinical haemorrhagic state in AHA, although further studies are required to support this conclusion, and to clarify the clinical differences between different types of AHA. Nevertheless, treatment of AHA in patients with high titre inhibitors has historically involved the use of coagulation-bypassing agents. Meeks et al. (9) suggested, however, that administration of high-doses of FVIII should be considered more actively for patients with AHA anti-C2 type 2 inhibitors, but not in those with type 1 inhibitors. Their conclusion was based on the findings that the activity of high-titer type 2 inhibitors could be neutralised by increasing dosages of FVIII, and it may be that in the presence of low concentrations of exogenous FVIII, anti-C2 IgGs, complexed with FVIII, indirectly disturb the association between FIXa and FX. At high doses of exogenous FVIII, inhibitory activity could be completely neutralised, and unbound (free) FVIII would be available to participate in tenase assembly. Type 1 patients failed to respond to high-dose FVIII; however, and our present data are not totally consistent with those findings. The challenging observations warrant further investigation.

Acknowledgement

We thank Dr. Tetsuhiro Soeda and Dr. John C. Giddings for helpful suggestions.

Conflict of interest

K.N. has received a grant from Bayer Haemophilia Award 2009.

References

