Compromised shear-dependent cleavage of type 2N von Willebrand factor variants by ADAMTS13 in the presence of factor VIII

Christopher G. Skipwith 1, 2; Sandra L. Haberichter 1; Ashley Gehrand 1; X. Long Zheng 1, 2

1Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Pennsylvania, USA; 2The University of Pennsylvania, Philadelphia Perelman School of Medicine, Philadelphia, Pennsylvania, USA; 3Blood Research Institute, Blood Center of Wisconsin, and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

Dear Sirs,

Our studies have demonstrated that binding of coagulation factor VIII (FVIII) and/or platelets to von Willebrand factor (VWF) dramatically enhances its proteolytic cleavage by ADAMTS13 metalloprotease under fluid shear stress (1, 2). The rate enhancing effect of FVIII on proteolysis of ultra-large VWF by ADAMTS13 has also been demonstrated in iVIII/−/− mice after hydrodynamic reconstitution with various FVIII constructs that retain the binding capacity toward VWF (3). Here, we sought to determine whether mutations in VWF, found in patients with type 2N von Willebrand disease (VWD) that result in reduced FVIII-binding capacity, would affect its shear-dependent proteolysis by ADAMTS13 in the presence of FVIII.

Wild-type (WT) and several naturally occurring type 2N VWF variants (H817Q, R854Q+T789A, R782W, and R782W+H817Q) or a hereditary persist-ence type 2N, and HPP variants (H817Q, R854Q+T789A, and R782W) were transiently expressed in human embryonic kidney 293T cells. Multimer analysis revealed a similar multimer distribution of all type 2N variants on a low resolution (1%) agarose gel (not shown) but significantly increased molecular weight of each ladder of the HPP variant on a high resolution (2%) agarose gel compared with that of WT and type 2N variants (Figure 1B, lane 6), consistent with the presence of propeptide. These results indicate that the type 2N and HPP VWF variants chosen for the study have a normal (or expected) multimer distribution.

Type 2N mutations are primarily localised to the D’D3 domain of VWF that contain a high-affinity binding site for ADAMTS13 under denaturing conditions (13). As shown, proteolytic cleavage of type 2N (H817Q, R854Q+T789A, R782W, and R782W/H817Q) and HPP variants was quite similar to that of WT under these conditions (Figure 1E). These results indicate that there is no intrinsic defect in the susceptibility of these VWF variants to ADAMTS13 when the central A2 domain of the VWF variants is sufficiently unfolded by denaturants.

In this study, we report the novel demonstration that proteolytic cleavage of type 2N and HPP VWF variants by ADAMTS13 in the presence of FVIII was variably reduced as compared with that of WT. By a cleaved A2-specific ELISA that detected the N-terminal peptide after the Tyr residue (Figure 1F) or by Western blotting that detected the cleavage product.

Figure 1: Cleavage of type 2N von Willebrand factor variants by ADAMTS13 in the presence of FVIII. A) Schematic representation of a full-length human pro-VWF with type 2N mutations indicated below the structure. Mutations affect either the furin cleavage site (HPP) or the D’D3 domain (H817Q, R854Q+T789A, and R782W). B) Multimer distribution of the expressed WT, type 2N, and HPP VWF variants by 2% agarose gel electrophoresis (Figure 1A) or by Western blotting (Figure 1C), consistent with the clinical phenotypes of these patients (10, 11).

Because three body interactions among VWF, ADAMTS13, and FVIII may be necessary for the efficient proteolysis of VWF by ADAMTS13 under fluid shear stress (12), the binding of immobilised WT, type 2N, and HPP VWF to soluble ADAMTS13 at various concentrations was also determined. As shown, ADAMTS13 bound WT, type 2N, and HPP VWF variants with similar capacity under these conditions (Figure 1D). These results demonstrate that type 2N and HPP mutations in VWF only affect its FVIII binding but not ADAMTS13 binding.

To rule out the possibility of any global effect in type 2N and HPP variants, proteolytic cleavage of these variants by ADAMTS13 under denaturing conditions was determined by the method described previously (13). As shown, proteolytic cleavage of type 2N (H817Q, R854Q+T789A, R782W, and R782W/H817Q) and HPP variants was quite similar to that of WT under these conditions (Figure 1E). These results indicate that there is no intrinsic defect in the susceptibility of these VWF variants to ADAMTS13 when the central A2 domain of the VWF variants is sufficiently unfolded by denaturants.

Letters to the Editor

202

© Schattauer 2013 Thrombosis and Haemostasis 110.1/2013

Compromised shear-dependent cleavage of type 2N von Willebrand factor variants by ADAMTS13 in the presence of factor VIII

Christopher G. Skipwith 1, 2; Sandra L. Haberichter 1; Ashley Gehrand 1; X. Long Zheng 1, 2

1Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Pennsylvania, USA; 2The University of Pennsylvania, Philadelphia Perelman School of Medicine, Philadelphia, Pennsylvania, USA; 3Blood Research Institute, Blood Center of Wisconsin, and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

Dear Sirs,

Our studies have demonstrated that binding of coagulation factor VIII (FVIII) and/or platelets to von Willebrand factor (VWF) dramatically enhances its proteolytic cleavage by ADAMTS13 metalloprotease under fluid shear stress (1, 2). The rate enhancing effect of FVIII on proteolysis of ultra-large VWF by ADAMTS13 has also been demonstrated in iVIII/−/− mice after hydrodynamic reconstitution with various FVIII constructs that retain the binding capacity toward VWF (3). Here, we sought to determine whether mutations in VWF, found in patients with type 2N von Willebrand disease (VWD) that result in reduced FVIII-binding capacity, would affect its shear-dependent proteolysis by ADAMTS13 in the presence of FVIII.

Wild-type (WT) and several naturally occurring type 2N VWF variants (H817Q, R854Q+T789A, R782W, and R782W+H817Q) or a hereditary persist-ance type 2N, and HPP variants (H817Q, R854Q+T789A, and R782W) were transiently expressed in human embryonic kidney 293T cells. Multimer analysis revealed a similar multimer distribution of all type 2N variants on a low resolution (1%) agarose gel (not shown) but significantly increased molecular weight of each ladder of the HPP variant on a high resolution (2%) agarose gel compared with that of WT and type 2N variants (Figure 1B, lane 6), consistent with the presence of propeptide. These results indicate that the type 2N and HPP VWF variants chosen for the study have a normal (or expected) multimer distribution.

Type 2N mutations are primarily localised to the D’D3 domain of VWF that contain a high-affinity binding site for ADAMTS13 under denaturing conditions (13). As shown, proteolytic cleavage of type 2N (H817Q, R854Q+T789A, R782W, and R782W/H817Q) and HPP variants was quite similar to that of WT under these conditions (Figure 1E). These results indicate that there is no intrinsic defect in the susceptibility of these VWF variants to ADAMTS13 when the central A2 domain of the VWF variants is sufficiently unfolded by denaturants.

In this study, we report the novel demonstration that proteolytic cleavage of type 2N and HPP VWF variants by ADAMTS13 in the presence of FVIII was variably reduced as compared with that of WT. By a cleaved A2-specific ELISA that detected the N-terminal peptide after the Tyr residue (Figure 1F) or by Western blotting that detected the cleavage product.

Figure 1: Cleavage of type 2N von Willebrand factor variants by ADAMTS13 in the presence of FVIII. A) Schematic representation of a full-length human pro-VWF with type 2N mutations indicated below the structure. Mutations affect either the furin cleavage site (HPP) or the D’D3 domain (H817Q, R854Q+T789A, and R782W). B) Multimer distribution of the expressed WT, type 2N, and HPP VWF variants by 2% agarose gel electrophoresis (Figure 1A) or by Western blotting (Figure 1C), consistent with the clinical phenotypes of these patients (10, 11).

Because three body interactions among VWF, ADAMTS13, and FVIII may be necessary for the efficient proteolysis of VWF by ADAMTS13 under fluid shear stress (12), the binding of immobilised WT, type 2N, and HPP VWF variants bound FVIII with a progressively reduced capacity in the following order: H817Q>R854Q+T789A>R782W>R782W+H817Q>HPP VWF (Figure 1C), consistent with the clinical phenotypes of these patients (10, 11).

To rule out the possibility of any global effect in type 2N and HPP variants, proteolytic cleavage of these variants by ADAMTS13 under denaturing conditions was determined by the method described previously (13). As shown, proteolytic cleavage of type 2N (H817Q, R854Q+T789A, R782W, and R782W/H817Q) and HPP variants was quite similar to that of WT under these conditions (Figure 1E). These results indicate that there is no intrinsic defect in the susceptibility of these VWF variants to ADAMTS13 when the central A2 domain of the VWF variants is sufficiently unfolded by denaturants.

In this study, we report the novel demonstration that proteolytic cleavage of type 2N and HPP VWF variants by ADAMTS13 in the presence of FVIII was variably reduced as compared with that of WT. By a cleaved A2-specific ELISA that detected the N-terminal peptide after the Tyr residue (Figure 1F) or by Western blotting that detected the cleavage product.
of 350 kDa (the dimer of two C-terminal fragments) (Figure 1G and H), we observed significantly reduced cleavage in two type 2N variants (R782W+H817Q and HPP) that had a severe defect in FVIII-binding (Figure 1C). Even in the presence of 20 nM FVIII, little or no cleavage was observed for R782W+H817Q and HPP variants under fluid shear stress (Figure 1F, G, and H). The reduction in the proteolytic cleavage of type 2N variants was proportional to the severity of the FVIII-binding defect (Figure 1F, G, and H). These results suggest that type 2N and HPP VWF variants that are defective in their FVIII binding are compromised in cofactor- and shear-dependent proteolysis by ADAMTS13.

Binding of the propeptide to the D'D3 domains of VWF has been shown to attenuate its function in agglutinating platelets (14). Therefore, ristocetin-induced platelet agglutination and proteolysis of type 2N and HPP VWF variants were assessed as described previously (2). Our results demonstrated that all type 2N variants agglutinate lyophilised platelets normally in the presence of ristocetin (data not shown). Moreover, the proteolytic cleavage of type 2N variants by ADAMTS13 in the presence of both lyophilised platelets (150 x 10^3/µl) and ristocetin (1 mg/ml) under fluid shear stress was also similar to that of WT (not shown). These results indicate that type 2N mutations in the D'D3 domains do not affect platelet binding and ristocetin/platelet-mediated proteolysis. Interestingly, a statistically significant reduction (20%) in the ristocetin-induced platelet aggregation and proteolytic cleavage by ADAMTS13 was observed for the HPP variant compared with WT under the same conditions (p<0.01) (not shown), consistent with the detrimental effect of binding of the propeptide to the D'D3 domains of VWF on both FVIII and platelet-dependent proteolysis by ADAMTS13 under fluid shear stress.

We conclude that the expressed type 2N VWF variants have normal patterns of multimerisation, normal binding to ADAMTS13, and normal ability to agglutinate platelets in the presence of ristocetin. However, these variants have variably reduced FVIII-binding capability and reduced cofactor- and shear-dependent proteolysis by ADAMTS13. The findings may suggest a potential advantage by limiting the proteolytic cleavage of a haemostatic protein like VWF in cases of a bleeding disorder.

Acknowledgements
The study was supported in part by a grant from the American Heart Association (0940100N) and the National Institute of Health (HL074124, Project 3).

Conflicts of interest
None declared.

References