Platelet-vessel wall interactions in atherosclerotic disease

Harald F. Langer*, Meinrad Gawaz

Medizinische Klinik III, Klinik für Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany; *Currently: Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA

Summary
During the prolonged course of atherosclerotic disease, platelets are of central importance as they contribute to the initiation of the disease, to its progression and acute exacerbation but also provide potential regenerative mechanisms. Platelets secrete chemokines and cytokines that mediate vascular inflammation and are in turn activated by substances released from cells of the vascular wall. These interactions represent positive and negative feedback loops, which in case of dysregulation may lead to development and progression of disease. Furthermore, platelet adhesion to the endothelium is critical for the initiation of atherosclerotic lesion formation in vivo. Even prior to endothelial denudation, platelet adhesion governed by disturbed flow at predilection sites for atherosclerosis induces recruitment of proatherosclerotic cells and release of proinflammatory mediators from all involved cell types. Finally, the pathogenetic role of platelets for late atherothrombotic events including plaque rupture, microembolism or spasms within the microcirculation is well established. However, increasing evidence indicates that platelets mediate on the other hand potential regenerative mechanisms. Platelets recruit circulating progenitor cells to sites of vascular injury. Furthermore, they influence their biological activity and maturation. Therefore, platelets contribute at all stages of vascular disease by interfering with highly dynamic processes. Understanding interactions of platelets with other circulating cells and the vascular wall is a prerequisite to understand cardiovascular disease and to identify potential therapeutic targets.

Keywords
Atherothrombosis, platelet physiology, stem cells

Platelet secretion and generation of cytokines

The pathogenesis of atherosclerosis contains a strong pro-inflammatory component, which involves diverse cell types and mediating signals. Between platelets and chemokines an intricate functional relationship exists, which provides a framework of mechanisms for synergistic functions and allows insights into the deleterious basis for proatherogenic, proinflammatory or thrombogenic effects (1). Activated platelets can release chemokines and can induce the generation and secretion of chemokines in various cells of the vascular wall including CCL3, RANTES (CCL5), CCL7, CCL17, CXCL1, CXCL5 or CXCL8, as well as precursors for CXCL7, such as β-thromboglobulin (1, 2) (see Table 1).

In turn, certain chemokines can enhance platelet aggregation and adhesion in combination with primary agonists and can trigger monocyte recruitment (3). Platelet factor 4 (PF4; CXCL4) is the most abundant CXC chemokine released from platelet alpha-granules. PF4 acts as a chemoattractant for monocytes promoting their differentiation into macrophages (4). Furthermore, PF4 may directly promote atherosclerosis by the inhibition of LDL catabolism, which is mediated in part by competing for binding to the LDL receptor, by promoting interaction with cell-associated chondroitin sulfate proteoglycans and by disrupting the normal endocytic trafficking of LDL/LDL-R complexes (5). In addition, PF4 markedly enhances the esterification and uptake of oxidized LDL by macrophages (6). Among the wide range of chemokines found to be expressed in...
atherosclerotic lesions, the deposition of PF4 has been correlated with lesion severity and symptomatic atherosclerosis, suggesting that persistent platelet activation may contribute to the evolution of vascular lesions. Given that PF4 and oxidized LDL co-localize in macrophage-derived foam cells of atherosclerotic lesions, this mechanism likely promotes vascular lipid accumulation (7).

Elevated serum levels of CD40 ligand (CD40L, CD154) indicate an acute risk for a coronary event (8). Release of platelet-derived CD40L, which is stored in high amounts in platelet granules and released within seconds after activation in vitro, induces inflammatory responses in endothelium (9). Ligation of CD40 on endothelial cells (ECs) by CD40L expressed on the surface of activated platelets increased the release of interleukin (IL)-8 and monocyte chemoattractant protein 1 (MCP-1), major chemoattractants for neutrophils and monocytes (9). Only recently, the expression of LIGHT (TNFSF14, a protein, which belongs to the tumor necrosis factor super-family and causes pro-inflammatory and pro-thrombotic changes qualitatively comparable to effects of CD40 ligand) was identified on platelets upon exposure to ADP or TRAP-1 (10, 11). Platelet-associated LIGHT influenced adhesion of platelets to the endothelium, while soluble LIGHT induced a pro-inflammatory state in vascular ECs, rendering this molecule a potential therapeutic or diagnostic target in atherosclerosis (11). As patients with myocardial infarction revealed increased levels of soluble LIGHT, this molecule may be of clinical importance for the pathogenesis of coronary artery disease (11). Platelet-induced alterations like the induction of endothelial MCP-1 secretion by stimulated platelets has been attributed to an activation of nuclear factor κB (NF-κB)-dependent transcriptional mechanisms, possibly involving platelet-derived IL-1β (12). Furthermore, transient adhesion of platelets to the endothelium initiates degradation of IκB and supports activation of NF-κB in ECs, thereby inducing NF-κB-dependent chemokine gene transcription (Fig. 1A). In line with these findings, the disruption of CD40 ligand-induced signaling by antibody inhibition or genetic deletion has been shown to reduce the formation and progression of atherosclerotic lesions in mice (13, 14). Similarly to IL-1β, CD40L expressed on platelets induces release of chemokines from endothelial cells and expression of adhesion molecules, thereby generating signals for the recruitment of leukocytes. CD40 ligation on ECs, smooth muscle cells and macrophages initiates the expression and release of matrix-degrading enzymes, the MMPs, which significantly contribute to destruction and remodeling of inflamed tissue. Activated platelets release MMP-2 during aggregation (15). Furthermore, adhesion of activated platelets to ECs results in generation and secretion of MMP-9 and of the protease receptor urokinase-type plasminogen activator receptor (uPAR) on cultured endothelium (16). The endothelial release of MMP-9 is dependent on both the fibrinogen receptor GPIIb/IIIa and CD40L, since inhibition of either mechanism resulted in reduction of platelet-induced matrix degradation activity of ECs. Moreover, GPIIb/IIIa ligation results in substantial release of CD40L in the absence of any further platelet agonist (16). These results suggest that the release of platelet-derived proinflammatory mediators like CD40L is dependent on GPIIb/IIIa-mediated adhesion. However, secretion of platelet-derived chemokines can be stimulated by classical primary agonists such as thrombin or by oxidized low-density lipoprotein (LDL), as shown for the release of CXC chemokines in patients with coronary artery disease (17). Another chemokine released by stimulated platelets is the CC chemokine RANTES, which can be immobilized on the surface of activated microvascular or aortic endothelial cells (3, 18). Platelet-monoocyte interaction can result in the deposition of the platelet-derived chemokines RANTES to the monocyte surface and early atherosclerotic endothelium (18, 19). This appears to be particularly effective under flow conditions supporting platelet rolling and it triggers subsequent recruitment of proinflammatory cells including monocytes and T cells (3, 18). The specific role of this

<table>
<thead>
<tr>
<th>Reference</th>
<th>Chemokine</th>
<th>Counter-receptor</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boehlen et al. (67)</td>
<td>CXCL1/ GRO-α</td>
<td>CXCRI and CXCR1</td>
<td>human</td>
</tr>
<tr>
<td>Brandt et al. (68)</td>
<td>CXCL4/ PF4</td>
<td>CXCR3B, PG</td>
<td>human, murine</td>
</tr>
<tr>
<td>Struyf et al. (69)</td>
<td>CXCL4L1/ PF4</td>
<td>?</td>
<td>human</td>
</tr>
<tr>
<td>Klinger et al. (70)</td>
<td>CXCL5 ENA-78</td>
<td>CXCR2</td>
<td>human</td>
</tr>
<tr>
<td>Brandt et al. (68)</td>
<td>CXCL7 and precursors PBP, β-TG, CTAPIII, NAP-2</td>
<td>CXCR2</td>
<td>human</td>
</tr>
<tr>
<td>Gear et al. (71)</td>
<td>CXCL8/ IL-8</td>
<td>CXCR1, CXCR2</td>
<td>human</td>
</tr>
<tr>
<td>Massberg et al. (23)</td>
<td>CXCL12/ SDF-1</td>
<td>CXCR4</td>
<td>human, murine</td>
</tr>
<tr>
<td>Power et al. (72)</td>
<td>CCL1/1-309</td>
<td>CCR8</td>
<td>human</td>
</tr>
<tr>
<td>Schober et al. (73)</td>
<td>CCL2/ MCP-1</td>
<td>CCR2</td>
<td>human, murine</td>
</tr>
<tr>
<td>Klinger et al. (74)</td>
<td>CCL3/ MIP-1α</td>
<td>CCR1, CCR2, CCR3</td>
<td>human</td>
</tr>
<tr>
<td>Kameyoshi et al., Klinger et al. (74, 75)</td>
<td>CCL5/ RANTES</td>
<td>CCR1, CCR3, CCR5</td>
<td>human, murine</td>
</tr>
<tr>
<td>Power et al. (72)</td>
<td>CCL7/ MCP-3</td>
<td>CCR1, CCR2, CCR3</td>
<td>human</td>
</tr>
<tr>
<td>Fujisawa et al. (76)</td>
<td>CCL17/ TARC</td>
<td>CCR4, CCR8</td>
<td>human</td>
</tr>
</tbody>
</table>
chemokine for atherogenesis is further strengthened by the fact that treatment of atherosclerosis-prone mice with inhibiting Met-RANTES resulted in altered lesion formation (3, 18). Thus, it has become evident that the deposition of RANTES is a principle mechanism by which activated platelets can support and sustain atherogenic monocyte recruitment. Another central proinflammatory substance released by platelets is IL-1β. IL-1β is of particular interest as it has been recently shown to be one of the proteins actively generated by platelets themselves (19). The generation of IL-1β is stepwise regulated by a complex mechanism. The pre-mRNA for IL-1β, which is present in quiescent platelets, needs to be spliced. This splicing is dependent on platelet activation and GPIIb/IIIa engagement (20). Besides platelets being on the effector face of endothelial inflammation, they themselves can be activated by chemokines. Endothelial bound CX3CL1 (Fractalkine), which has been shown to be over-expressed in atherosclerotic lesions and vascular injury, contributes to platelet activation and adhesion (21). Recently, it has become evident that CX3CL1 induced leukocyte adhesion is dependent on the presence of platelets and correspondingly specific inhibition of platelet adhesion to inflamed endothelial cells significantly reduced leukocyte recruitment to atherosclerotic lesions in vivo (22). Interestingly, platelets not only recruit pro-inflammatory cells like monocytes to atherosclerotic lesions, but also express and release chemokines, for instance SDF-1, a process potentially inducing progenitor cell mediated regenerative mechanisms (see below) (23, 24). Moreover, platelets are capable of mediating arrest of immuno-modulatory dendritic cells in vitro as well as in vivo (25).

Taken together platelets and chemokines can act as mutual and bidirectional effectors most likely regulated by positive and negative feedback loops, which in case of dysregulation may lead to development of disease (1).

Platelet adhesion initiates atherosclerosis – a model of platelet-induced disease

Not long ago the concept of platelets in atherosclerosis was that of a cell belonging to the coagulation cascade and participating in the final step of atherosclerosis, the rupture of the plaque followed by thrombotic narrowing or occlusion of a vessel. However, abundant new insights into the pathogenesis of atherosclerosis and atherothrombosis have changed this dogma. Pla-
Platelets are more and more recognized to be involved in the earliest processes of atherogenesis (Fig. 1C). Governed by disturbed flow platelets adhere to the arterial wall in vivo, even in the absence of endothelial cell denudation, thereby initiating lesion formation (26–27). The intact, non-activated endothelium normally prevents platelet adhesion to the extracellular matrix. Under inflammatory conditions platelets can adhere to the intact but activated endothelial cell monolayer (28–30). Even under high shear stress platelet adhesion to the intact endothelium occurs in vivo and is coordinated in a multistep process that involves platelet tethering, followed by rolling and subsequent firm adhesion to the vascular wall (31, 32). These processes are dependent on receptor interactions via selectins, integrins and immunoglobulin-like receptors, which induce receptor-specific activation signals in both platelets and the respective partner in cell-cell adhesion, for instance endothelial cells (Fig. 1B).

The initial loose contact between circulating platelets and vascular endothelium (“platelet rolling”) is mediated by selectins, present on both endothelial cells and platelets (33–35). P-selectin is rapidly expressed on the endothelial surface in response to inflammatory stimuli by translocating from membranes of storage granules (Weibel-Palade bodies) to the plasma membrane within seconds. Endothelial P-selectin has been demonstrated to mediate platelet rolling in both arterioles and venules in acute inflammatory processes (36). E-selectin, which is also expressed on inflamed endothelial cells, allows a loose contact between platelets and endothelium in vivo, as well (36). A study with P-selectin (encoded by the Selp gene)-deficient platelets demonstrated that platelets interact with inflamed endothelium through the binding of platelet P-selectin with an endothelial ligand (37). Moreover, bone marrow transplantation experiments showed that mice receiving Selp−/− platelets (lacking P-selectin) developed smaller lesions than those receiving wild-type platelets (38). Even more dramatic findings were obtained in a model of wire-induced artery injury in Selp−/− and Apoe−/− double knockout mice (39). The strongest effects in the inhibition of atherosclerosis, however, seem to be obtainable with combined deficiency of E-selectins (the endothelial expressed selectin) and P-selectins, showing 80% and 40% protection in the early and advanced stages of the disease (40).

GPIIb-IIIa (α_{IIb}β_{3}) is the major integrin on platelets and plays a key role in platelet accumulation on activated endothelium. In the presence of soluble fibrinogen, α_{IIb}β_{3} mediates heterotypic cell adhesion to α_{IIb}β_{3}-expressing cells including endothelial cells (30, 41). Moreover, platelets firmly adhere to activated endothelial cells via α_{IIb}β_{3}, a mechanism, which can be blocked by antagonists of β_{3}-integrins (30). In vivo, firm platelet adhesion to the endothelium can be inhibited by mAb anti-α_{IIb}β_{3}, and platelets defective in α_{IIb}β_{3} do not firmly adhere to activated endothelial cells (42). Very recently, the role of α_{IIb}β_{3} for atherosclerosis related cerebral injury was further elucidated (43). To address the contribution of platelet GPIIb to atheroproliferation atherosclerotic lesion formation in GPIIb(+/+) -ApoE(-/-) or GPIIb(-/-)ApoE(-/-) mice in the carotid artery and aortic arch was determined (43). Interestingly, the absence of GPIIb attenuated lesion formation in both vascular locations, indicating that platelets contribute substantially to atherosclerosis via GPIIb (43). Moreover, after occlusion of the middle cerebral artery, the cerebral infarct size was drastically reduced in mice lacking GP IIb compared with wild-types (43). In another report, however, blockade of platelet aggregation with anti-GPIIb/IIIa F(ab)2 fragments had no positive effect on stroke size but increased the incidence of intracerebral haemorrhage and mortality after transient middle cerebral artery occlusion in a dose-dependent manner (44). Further studies will have to clarify this issue. Among the integrins expressed on the luminal side of endothelial cells, the vitronectin receptor (α_{β3}) furthermore appears to play a crucial role in promoting platelet adhesion. The vitronectin receptor is upregulated in response to endothelial cell activation, e.g. by IL-1β or thrombin (30, 45). Inhibition of α_{β3} attenuates platelet-endothelial cell interaction (30). Hence, both platelet α_{IIb}β_{3} and endothelial α_{β3} are involved in mediating firm platelet adhesion to endothelial cells. In fact, heterotypic cell adhesion through α_{IIb}β_{3} and α_{β3} requires the presence of fibrinogen, which bridges the platelet fibrinogen receptor to the endothelial vitronectin receptor (Fig. 1B) (41). A central adhesion molecule for the contact of platelets with the vascular wall is GPIb-IX. The importance of this adhesion receptor for platelet-mediated vascular inflammation is demonstrated by the fact that inhibition of platelet adhesion with a blocking mAb to GPIb reduced atherosclerosis in vivo (46). In summary, platelet-endothelial cell interactions represent a multistep process, in which selectins, integrins and immunoglobulin-like adhesion receptors play a predominant role. These receptor-dependent platelet-endothelial cell interactions allow transcellular communication via soluble mediators leading to a proinflammatory status of both endothelial cells and further cells subsequently recruited to the scene and, thus, contribute to vascular inflammation and atherosclerosis.

Impact of platelets on progenitor cells

Progenitor cells and vascular repair

The structural and functional integrity of the endothelium is determined by the balance between endothelial injury and repair. Prolonged exposure to cardiovascular risk factors leads to oxidative stress, elevated EC turnover and ultimately EC death. Vascular progenitor cells derived from different tissues have an ability to repair damaged vessel, in which the local microenvironment of the progenitors plays a crucial role in orchestrating cell homing and differentiation (47). Studies have demonstrated that atherosclerosis is a pathophysiological process initiated by EC death in specific areas such as bifurcation regions, which is followed by subsequent replacement by endothelial progenitor cells (EPCs) (48). Indeed, increasing evidence indicates that circulating EPCs contribute to re-endothelialization (49–51).

Progenitor cell recruitment by platelets

At sites of vascular injury or rupture of an atherosclerotic plaque various components of the subendothelial matrix are exposed including collagen or von Willebrand factor (52). Discontinuity of the vascular endothelium results in rapid platelet adhesion and thrombus formation (52, 53). As discussed in the previous sections, platelets are strong attractants for circulating pro-inflammatory cells like monocytes or neutrophils. Thus, it is likely that platelets can also provide a bridging mechanism for other circu-
lating cells like EPCs. Indeed, the first proof of this principle was delivered recently as isolated platelets were able to mediate adhesion of human CD34⁺ stem cells or mouse embryonal EPCs under arterial shear conditions (54, 55). Speaking of the mouse cells this adhesion was dependent on the P-selectin/PSGL-1 axis and β₃-integrin (54, 55). Meanwhile other reports have confirmed the finding that progenitor cells can be recruited by platelets (56, 57). Using intravital microscopy, we could furthermore show that platelets provide the critical signal, which recruits murine CD34⁺ bone marrow cells and c-Kit⁺ Sca-1⁺ Lin⁻ bone marrow-derived progenitor cells to sites of vascular injury in vivo (23). Binding of bone marrow cells to platelets in this setting involved both P-selectin and GPIIb integrin on platelets. In the mouse system, moreover β₂-integrins seem to play a pivotal role for the homing of circulating EPCs. In a murine model of hind limb ischemia, Sca-1⁻/Lin⁻ hematopoietic progenitor cells from β₂-integrin-deficient mice are less capable of homing to sites of ischemia and of improving neovascularization (58). A relevance of β₂-integrins for a platelet-EPC interaction has not been shown so far.

Influence of platelets on progenitor cell biology

The question arises whether the impact of platelets on progenitor cells is restricted to the recruitment of cells from the circulation. Once adherent or activated, platelets surface-upregulate or release an arsenal of highly active substances including potent cytokines, chemokines (see above) or mediators of proliferation (59). Therefore it seems likely that platelets are capable of modifying progenitor cell biology. Indeed, when exposed to isolated platelets murine embryonal EPCs or human CD34⁺ stem cells can differentiate towards mature endothelial cells (54, 60). Furthermore, platelets seem to enhance the biological power of EPCs by increasing their chemotaxis and migratory potential (54). The simple picture of platelets mediating regenerative effects through progenitor cells is very tempting. Like in most biological systems the picture is, however, more complex. Recently, we characterized another fate, which progenitor cells undergo after incubation with platelets. CD34⁺ human stem cells exposed to platelets under distinct conditions in vitro resulted in platelet uptake by the progenitor cells and finally in the development of foam cell-like cells (60–62). Therefore also contraproducive effects are mediated by platelet-EPC interaction, which can be controlled in vitro by the application of statins (60, 63). A major molecule involved in platelet-mediated effects on progenitor cells seems to be the chemokine SDF-1, as platelet-derived SDF-1 regulates recruitment, proliferation and differentiation of progenitor cells, a mechanism most likely contributing to vascular repair and regeneration of ischemic myocardium (23, 24, 64). Moreover, inhibition of the SDF-1/CXCR4 axis prevented recruitment of progenitor cells to vascular lesions in vivo (64, 65). For instance, pla-

Figure 2: Platelets serve as a bridging mechanism for circulating endothelial progenitor cells and thereby can contribute to atheroprotection and vascular regeneration. Platelets accumulate at sites of dysfunctional endothelium and disrupted atherosclerotic lesions. By release of pro-inflammatory molecules they themselves can induce or aggravate endothelial dysfunction. Armed with potent adhesion molecules for circulating cells, platelets are capable of recruiting circulating endothelial progenitor cells (EPCs). Depending on the surrounding microenvironment, pro-atherogenic (for instance the development of foam cells) or vascular reparatory mechanisms (differentiation of progenitor cells towards mature endothelial cells) can be promoted by interaction of platelets with progenitor cells.
tellet-derived SDF-1 binding to its receptor CXCR4 favours platelet-induced differentiation of CD34+ progenitor cells into mature endothelial cells in vitro (24, 64). Interestingly, the central angiogenic molecule VEGF or the structurally related molecule VEGF-C have been shown to be present in and released from activated platelets, implying a potential role of platelets in angiogenesis (66). Although platelets seem to represent a central regulatory element for progenitor cell fate in tissue regeneration (Fig. 2), the exact mechanisms mediating the differentiation of progenitor cells towards the one or the other cell type and the relevance of these findings in vivo still have to be determined.

Altogether, platelets may have undesired effects mediating early and late mechanisms that promote atherosclerosis. However, they also execute positive tasks like the induction of repair mechanisms. Thus, understanding platelet interactions with further circulating cells, the vessel wall and its components is fundamental to understand vascular disease, to prevent its initiation and to invent powerful means to treat it.

References