Anniversary Issue Contribution

Thrombosis and haemostasis, where clinical and basic science meet

Jos Vermylen
Emeritus Professor of Medicine, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium

The journal *Thrombosis et Diathesis Haemorrhagica* was founded fifty years ago, at a time when coagulation laboratories were being set up in many university departments around the world. The reason for the latter was two-fold; on the one hand, new congenital clotting disorders were continuously being discovered, and their differential diagnosis required laboratory investigation; on the other hand, the notion that oral anticoagulants could be beneficial following a myocardial infarction had just been introduced by Irving Wright (1, 2) among others; laboratories were needed to monitor this new form of therapy. In addition, open heart surgery was at its beginning, and expertise was needed to monitor heparin anticoagulation and its reversal by protamine.

Many of the clotting factors, starting with factor V and upwards, were discovered by clinician-scientists, from careful study of the plasma of patients with a congenital clotting disorder; when the plasma of two such patients was mixed, and the clotting process was not corrected, the patients were defined as having the same clotting factor deficiency; if the defect was corrected by mixing, it was assumed that the patients had different defects, so that they could substitute for each other; in this way new clotting factors were identified. Clotting factors were further defined by whether the correcting activity was present or absent in normal serum or in barium sulfate treated plasma, etc.

It should be emphasized here that most clotting factors were discovered in this way by careful patient studies in the 1950s, and that it took another 20 years before they were adequately purified and characterized biochemically. This early scientific development remains perhaps one of the most dramatic examples of how detailed patient studies can contribute to forwarding basic knowledge. On the other hand these clinical discoveries often occurred simultaneously in different parts of the world, and each clinician-scientist introduced a new name for his/her newly discovered clotting factor (either the patient’s name or the presumed physiological role, e.g. “plasma thromboplastin antecedent”). As a result, a “Tower of Babel” situation emerged, different coagulation schools using their own personal nomenclature to define a specific entity (3).

It is in this setting of explosive increase in knowledge and confusion that Professors Erwin Deutsch, Rudolf Jürgens and Fritz Koller had the brilliant insight to approach Professor Paul Matis and Schattauer Publishers and to convince them to start an international journal specifically oriented towards thrombosis and haemostasis, the international character being emphasized by choosing the Latin title “*Thrombosis et Diathesis Haemorrhagica*”. At about the same time, an International Committee for the Nomenclature of Blood Coagulation Factors was set up, and fortunately agreement was gradually reached on a Roman Numeral Nomenclature that we still use today and that allowed to diminish the confusion. Detailed accounts of this committee’s deliberations were published in the early issues of *Thrombosis et Diathesis Haemorrhagica*. The International Committee for the Nomenclature of Blood Coagulation Factors eventually evolved into the International Society on Thrombosis and Haemostasis that quite naturally selected *Thrombosis et Diathesis Haemorrhagica* to become the official journal of the Society, while changing its name into *Thrombosis and Haemostasis*.

It was during the exciting period in the late 1950s that Marc Verstraete wished to study the effects of varying the loading doses of different vitamin K antagonists on the various clotting factors that had then been defined. For this purpose, he entered a lecture room for preclinical medical students and asked for some students to volunteer in this experiment (at that time there was no detailed informed consent or ethics committee supervision). This is how I came to know the laboratory for blood coagulation at the University of Leuven. The enthusiasm of those working there was contagious, and so I joined the lab the next vacation as a summer
student and I have remained linked to it ever since. An older medici-

cal student started trying to explain to me the clotting process, but

after an hour or so I was completely lost and he decided to put me

with his fellow student, the late Professor Antoon Amery, who

was studying an apparently simpler enzymatic system, fibrinolysis.

This led to my first co-authorship on an international paper, in


Fibrinolysis is another example of an early encounter be-

tween clinical and basic science. It had gradually become appar-

ent that the clotting system not only was needed for preventing

bleeding, but that fibrin also was involved in vessel occlusion.

The concept of fibrinolysis to open up occluded vessels seemed

attractive. Already in the early 1960s, Verstraete et al. used

the knowledge on fibrinolysis gathered at that stage to provide

"proof of principle" that an occlusive arterial thrombus could in-

deed be lysed enzymatically (5). Marc Verstraete in Leuven to-

gether with Jürgen van de Loo in Münster then organized the

first multinational, multicenter studies to demonstrate the use-

fulness of thrombolytic therapy in myocardial infarction (6–7).

These efforts by "clotters" were viewed with scepticism, if not

with derision, by academic cardiologists, some of whom

claimed, until late into the 1970s, that coronary thrombosis is the

consequence, not the cause, of myocardial infarction. It is only

when coronarographic evidence was obtained that cardiologists

suddenly were convinced (8).

Not only in coagulation and fibrinolysis, but also in platelet

physiology, has the clinic sometimes driven basic research;

Glanzmann’s thrombasthenia for the first time illustrated the im-

portance of the platelet glycoprotein IIb/IIIa complex (9); the

study of von Willebrand disease has driven the knowledge on the

interaction between von Willebrand factor and platelet glycopro-

tein Ib. On the other hand, physiological or pharmacological ob-

servations, such as the inhibition of platelet aggregation by

aspirin (10), were also very rapidly applied to patients with vascu-

lar disease (11), even before thrombomaxime A2 was actually dis-

covered (12); this therefore is another striking example of the

eyearly fruitful interaction between basic and clinical science in the

areas of thrombosis and haemostasis. More recent examples

abound; the existence of patients with thrombosis and resistance

to the anticoagulant effects of activated protein C (13) led to the

identification of the factor V Leiden mutation (14); the study of

deficient von Willebrand factor cleaving protease in patients with

thrombotic thrombocytopenic purpura (15) led to the discovery

congenital or acquired ADAMTS 13 deficiency (16). Un-

doubtedly the clinic will continue to inspire the researchers. In

the other direction, advances in basic science will continue to inspire

clinicians to refine their diagnosis and improve their treatments.

At this stage of medical history, expressions such as "trans-

lational research", "from bedside to bench and back" have very

much become buzz words. As illustrated in this brief paper, sci-

entists involved in thrombosis and haemostasis have a long tradi-

tion in translational research. But the isolated clinician-scientist may

well be a dying species, his/her role being taken over by multidis-

ciplinary teams. This does not mean that there is no future for cli-

nicians. As example, with the current knowledge of the human ge-

nome, new genetic defects are being discovered in protein structure

e.g. congenital defects of glycosylation) or in signal transduction

mechanisms, that can lead to a complex phenotype, including a

bleeding problem (17–18). Progress in this area will depend on a

close interaction between astute clinicians and molecular biol-

ogists. Similarly, the increasing use of anticoagulant or other drugs

blocking various signal transduction pathways is likely to affect

normal platelet production and behavior, but also vascular func-

tion, potentially resulting in new bleeding or thrombotic manifes-

tations. Also in this regard, careful clinical observations will remain

essential to identify and perhaps help prevent such complications.

It therefore is obvious that journals devoted to thrombosis

and haemostasis should continue to aim at being major means of

communication between and an important source of inspiration

for both basic and clinical scientists. It was a privilege for me

to assist this Journal in these functions by being its Editor-in-Chief

between 1993 and 1999, a period during which *Thrombosis and

Haemostasis* still was the official journal of the International So-

ciety on Thrombosis and Haemostasis.


References

1. Wright IS. The modern treatment of coronary

thrombosis with myocardial infarction. Circulation


2. Wright IS, Beck DF, Marple CD. Myocardial in-

farction and its treatment with anticoagulants; sum-

mary of findings in 1031 cases. Lancet 1954; 266:

92–95.

3. Wright IS. Chaos or communication. *J Am Med

Ass* 1957; 163: 358–359.


the fibrinolytic activity in human blood by occlusion of

blood vessels I. The appearance of the phenomenon. 


5. Verstraete M, Amery A, Vermylen J. Feasibility of

adequate thrombolytic therapy with streptokinase in

peripheral arterial occlusions I. Clinical and arterio-


6. European working party. Streptokinase in recent

myocardial infarction: a controlled multicentre trial. 


7. European cooperative study group for streptoki-

nase treatment in acute myocardial infarction. 

Streptokinase in acute myocardial infarction. *N Engl J Med*

1979; 301: 797–802.


of total coronary occlusion during the early hours of 


303: 897–902.

9. Norden AT, Caen JP. An abnormal platelet glyco-

protein pattern in three cases of Glanzmann's Thromb-


10. Weiss HJ, Aledort LM. Impaired platelet-bleeding

tissue reaction in man after aspirin ingestion. 


11. Elwood PC, Cochrane AL, Burr ML, et al. A ran-

domized controlled trial of acetyl salicylic acid in the 

secondary prevention of mortality from myocardial in-


12. Hamberg M, Svensson J, Samuelsson B. Thromb-

oxanes: a new group of biologically active compounds 

derived from platelet endoperoxides. Proc Natl Acad 


variation of the extra-large stimulatory G protein 


tation in blood coagulation factor Va associated with 

resistance to activated protein C. *Nature* 1994; 369: 

64–67.


activity of von Willebrand factor-cleaving protease in 

chronic relapsing thrombotic thrombocytopenic pur-


and function of von Willebrand factor-cleaving protease 

(ADAMTS 13), a metalloprotease involved in throm-

botic thrombocytopenic purpura. *J Biol Chem* 2001; 276: 

41059–41063.


disorders of glycosylation type Ia and IIa are associated 

with different primary haemostatic complications. *J

Inherit Metab Dis* 2001; 24: 477–492.


variation of the extra-large stimulatory G protein 

alpha-subunit leads to Gs hyperfunction in platelets 

and is a risk factor for bleeding. *Thromb Haemost*

2001; 86: 733–738.