Stress testing at the cellular and molecular level to unravel cellular dysfunction and growth factor signal transduction defects: What Molecular Cell Biology can learn from Cardiology

Johannes Waltenberger
Department of Cardiology, University of Maastricht, Maastricht, The Netherlands

Summary
Clinical medicine has been revolutionized by the impact of cellular and molecular biology in the past 30 years. This article focuses on a novel approach, whereby the clinically proven and important concept of patient or organ stress testing is being applied to cellular models, thereby developing and validating novel quantitative molecular and cellular stress tests. One example is monocyte chemotaxis analysis, whereby circulating monocytes freshly isolated from peripheral blood are being tested for their migratory responsiveness towards relevant biological stimuli such as growth factors or chemokines. These stimuli are relevant for recruiting monocytes to sites of local inflammation such as during wound healing or arteriogenesis, i.e. growth of collateral arteries. Initial clinical studies to validate “ligand-induced monocyte chemotaxis” indicate that this parameter is impaired in the presence of various cardiovascular risk factors including diabetes mellitus, hypercholesterolemia or smoking. In addition, there is proof of concept that impaired monocyte chemotaxis is reversible as shown for anti-oxidants in smokers. Moreover, the parameter “ligand-induced monocyte chemotaxis” is of great relevance for basic science (including Molecular Cell Biology) as unravelling the underlying molecular mechanisms of cellular dysfunction will certainly stimulate our understanding of the molecular basis of cellular function. This article highlights the concept of stress testing in modern medicine. Cellular stress testing is introduced as a novel and intriguing approach, which was developed as bedside-to-bench. Future prospective clinical trials will have to validate the predictive value of cellular stress testing.

Keywords
Monocytes, chemotaxis, functional cell testing, functional cellular diagnostics, stress test for vascular cells

From bedside to bench: An example of the 21st century

Over the past three decades, clinical medicine has learned a lot from cellular and molecular biology. The list of medical innovations and progress in our understanding of the pathogenesis of disease is long, and clinical medicine has greatly benefited from the introduction of molecular and cellular concepts. Along with these innovations, clinicians have learned a great deal about the concepts of molecular cell biology. At the same time, there was reverse flow of innovation, i.e. from bedside to bench, when animal models were set up to serve as in-vivo models of clinical conditions such as mouse or rat models of hyperglycaemia and diabetes mellitus (1).

Recently, our laboratory introduced a novel “bench to bedside” approach, which focuses on stress testing of circulating cells to provide additional and valuable information about the functional status of vascular cells. Clinical medicine has learned in the past that an individual patient (just like an individual cell) may carry a fully normal phenotype under resting conditions. Under certain conditions of “stress”, however, a pseudo-normal phenotype can be unmasked and be recognized as a pathological phenotype, thereby clearly proving the dysfunction of an organ system. In this context, stress can be defined as a forced physiologic response using a defined and standardized physiologic or supra-physiologic stimulus. Several clinical disciplines take advantage of the concept of stress testing, with Internal Medicine and Cardiology being good examples. Exercise stress testing in Cardiology (2) is the most prominent one. Other important
examples would be metabolic stress testing (e.g. oral glucose tolerance test) (3) or other endocrine provocation tests.

Stress testing in patients

Exercise stress testing was introduced into clinical practice only about 40 years ago (4) to predict limitations of the exercise capacity, to quantitatively assess either coronary or cardiovascular insufficiency and to detect coronary artery disease. Under resting conditions, the circulatory system uses only about 20% of its maximal functional capacity. Under conditions of maximal physical exercise, all reserves are being recruited and the efficiency of the system improves dramatically, i.e. about five-fold. Any limitation of the exercise tolerance reflects a reduced or sub-optimal function of the organ system that could not be detected under resting conditions. The exercise stress test is used to determine the function of heart and lungs by detecting:

1. Specific subjective symptoms of limited functionality (e.g. angina pectoris, dyspnea).
2. Specific objective measures for cardiopulmonary function (e.g. pulse-pressure product, maximal performance, anaerobic threshold etc.).
3. Monitoring of treatment in the case of limited function.

Table 1: Functional assessment of circulating cells.

<table>
<thead>
<tr>
<th>Cell number</th>
<th>Test assay, cellular parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell function</td>
<td>FACS (ISHAGE guidelines)</td>
</tr>
<tr>
<td></td>
<td>other FACS measurements (non-standardized)</td>
</tr>
<tr>
<td></td>
<td>purification of individual cell populations</td>
</tr>
<tr>
<td></td>
<td>counting chamber</td>
</tr>
<tr>
<td></td>
<td>colony formation</td>
</tr>
<tr>
<td></td>
<td>migration</td>
</tr>
<tr>
<td></td>
<td>adhesion</td>
</tr>
<tr>
<td></td>
<td>proliferation</td>
</tr>
<tr>
<td></td>
<td>colony formation</td>
</tr>
<tr>
<td></td>
<td>differentiation potential</td>
</tr>
<tr>
<td></td>
<td>gene expression</td>
</tr>
</tbody>
</table>

Typical diseases that can be detected by exercise stress testing (using treadmill or bicycle) are i) reduced systolic or diastolic cardiac function as seen in cardiomyopathy or hypertensive heart disease (presenting with limited exercise capacity and dyspnea), or ii) reduced exercise capacity secondary to exercise-related regional myocardial ischemia as seen in coronary insufficiency (coronary heart disease with one or more hemodynamically relevant coronary artery stenoses), which is usually presenting as angina pectoris or its equivalents.

An alternative to exercise stress testing is pharmacological stress testing using positive chronotropic agents such as dobutamine and atropine. Pharmacological stress testing is usually combined with imaging techniques to either detect stress-related regional perfusion defects (Tc-99m cardiac SPECT perfusion scan, stress-magnetic resonance imaging) or to detect stress-related impairment of regional myocardial function (stress-echocardiography).

Besides exercise stress testing to check the cardiovascular system, metabolic stress tests are being widely used in clinical medicine. The oral glucose tolerance test is such an example: a defined amount of glucose is given to a patient to test whether glycemic control is intact. Readout is the glucose level at a certain time point following glucose stress. This is a simple method for the early detection of prediabetes.

Cellular stress testing: A novel approach

Over the past two decades, Molecular Cell Biology has accumulated important and valuable molecular and cellular concepts, which are now available for clinical testing. This includes the establishment of disease-relevant molecular systems for cellular stimulation such as vascular endothelial growth factor (VEGF) receptor activity (5, 6) and functionally relevant cell types such as endothelial cells and monocytes (7).

Cells can be isolated from the peripheral blood of a patient and can be tested in various ways (Table 1). The standard analysis of blood-derived cells is the exact characterization using surface molecules (e.g. guidelines of the International Society of Hematotherapy and Graft Engineering, [ISHAGE]) (8) and the assessment of the cell number (per volume) of selected cell populations. Because circulating cells are fully exposed to the blood stream and therefore to all toxic and metabolic influences, they should be able to sense all negative influences exactly as endothelial cells in the vessel wall can, i.e. integrating and possibly reflecting several or even all metabolic and toxic influences. In order to detect latent and minor changes of cellular dysfunction, it appears to be reasonable to subject these circulating cells to certain physiologic stimuli, i.e. stress. Therefore, cellular stress testing may offer additional diagnostic information compared to the analysis of resting (non-stimulated) cells.

Monocytes are an important component in the process of angiogenesis (9) as they serve as bioreactors and reservoirs of various cytokines and chemokines, which can stimulate arteriolar growth in a paracrine fashion. The VEGF system, among others, can mediate angiogenesis (10). Besides controlling monocyte function, VEGF has been established as an important regulator of endothelial function. The most important VEGF-regulated endothelial activities that contribute to the normal en-
“Exercise physiology of cell populations”

Cellular stress testing can be performed in a classical manner using the modified Boyden chamber (20). The initial step in performing cellular exercise testing is to isolate certain cellular (sub-)populations without (pre)activating these cells during the isolation process. One suitable method consists of two parts: First, to isolate the white blood cell fraction (buffy coat) from whole blood using gradient centrifugation. Second, the negative or positive selection of white blood cell subsets (e.g. monocytes) out of the buffy coat using a panel of labelled antibodies that can be used to remove T cells, B cells and other cell types including CD14-positive monocytes and certain precursor cells (e.g. CD133+ cells) (17).

In the next step, the isolated cell fraction is tested for their chemotactic response. A variety of chemotactic assays is currently available. They are based on the principle initially reported by Boyden (20). Cells are suspended in a solution, placed above a filter membrane and are allowed to migrate through the (defined) pores of the membrane. After a certain time period, the cells that migrate through the membranous pores towards a gradient of the chemoattractant are subsequently counted at the basal aspect of the membrane. Alternatively, the leading front method has successfully been applied measuring the relative distance that the fastest moving cells migrated into a filter, which itself is about 100 μm thick (16). The modified Boyden chamber is commercially available and allows cellular stress-testing in a routine setting in dedicated laboratories (21).

The latest methodological perspective is to assess cellular migration in a miniaturized micro-chamber, an approach that has also been classified as ”cells on the chip” (22). This approach has been demonstrated to work for granulocytes, while it remains to be demonstrated for monocytes and circulating precursor cells. As soon as such a potentially powerful method can be reliably applied to the routine assessment of monocyte function in the clinical situation, the prognostic value of monocyte chemotactic responsiveness could be tested in large clinical cohorts and thereby validated for its prognostic value.

Table 3: Stress testing of humans and cells: A comparison.

<table>
<thead>
<tr>
<th>Subject studied</th>
<th>Clinical exercise test</th>
<th>Cell migration test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject studied</td>
<td>Whole patient</td>
<td>Isolated cells</td>
</tr>
<tr>
<td>Exercise device</td>
<td>Treadmill, bicycle</td>
<td>chemotaxis chamber</td>
</tr>
<tr>
<td>Parameter to assess</td>
<td>Exercise tolerance</td>
<td>Functional</td>
</tr>
<tr>
<td></td>
<td>Exercise capacity</td>
<td>responsiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemotactic capacity</td>
</tr>
<tr>
<td>Defect to be detected</td>
<td>Identify functional</td>
<td>Identify functional</td>
</tr>
<tr>
<td></td>
<td>defect or exercise-</td>
<td>defect or stimulation-</td>
</tr>
<tr>
<td></td>
<td>related deficit</td>
<td>related deficit</td>
</tr>
<tr>
<td>Monitoring therapy</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Not validated yet</td>
</tr>
<tr>
<td>Predictive value of test</td>
<td>Predictive for prognosis</td>
<td>Not validated yet</td>
</tr>
</tbody>
</table>

Vascular Biology – Concepts
The added value of functional testing in the clinical situation is potentially large. The functional data that can be generated this way may otherwise not become available. Our group has systematically performed monocyte chemotaxis analysis in recent years. We could describe the functional response of monocytes derived from diabetic individuals (21): The migratory response of isolated monocytes from diabetic individuals towards VEGF-receptor-1 ligands (VEGF-A, PlGF-1) is significantly impaired (21), while the fMLP-induced and G-protein coupled receptor-mediated migration was fully intact and similar to the one observed in monocytes from healthy individuals (21). Likewise, hypercholesterolemia (23) and smoking (24) are associated with a functional defect in monocytes (12) that can be unmasked by assessing monocyte function in a chemotaxis assay (Fig. 1).

Molecular mechanisms causing cellular (monocyte) migration defects

What is the molecular basis of a monocyte migration defect in specific and of a reduced migratory response in general? In the search for an explanation, we investigated the cellular activation pattern on different molecular levels (Fig. 1), namely i) on the receptor level (VEGFR-1 activation), ii) on the level of relevant signal transduction molecules (e.g. activation of ERK-1), and iii) on the level of the cellular response (e.g. chemotaxis). These studies resulted in postulating cardiovascular risk factor-related intracellular signal transduction defects inside the monocyte (12). Following VEGF stimulation, there was no inhibition of VEGFR-1 activation in monocytes from diabetic patients, while VEGF-induced migration was highly reduced (21). Of significance, both cells from diabetic individuals as well as those from healthy individuals showed a clear response to VEGF stimulation in vitro, namely that VEGF-A could induce tyrosine phosphorylation when tested by in-vitro kinase assay. This clearly indicates that the VEGF-receptor kinase is fully intact even in monocytes from diabetic individuals. The only reasonable explanation compatible with these findings is the presence of a signal transduction defect downstream of VEGF-receptor-1 in monocytes from diabetic patients.

Recent data obtained in smokers indicate a signal transduction defect downstream of VEGFR-1 as well; VEGF-induced VEGFR-1 activation remained intact, while migration was severely affected (24). Like diabetic monocytes, monocytes isolated from young and otherwise healthy smokers showed a significant impairment of VEGF-induced chemotaxis, while VEGF-A was capable of inducing tyrosine phosphorylation in these cells. We could demonstrate that smoking-related monocyte dysfunction was based on the negative influence of reactive oxygen species (ROS), as a two-week oral treatment with vitamin C (1 gram twice a day) resulted in a complete reversal of the pathological monocyte phenotype. Therefore, anti-ROS treatment of smokers resulted in fully functional monocytes that were capable of properly responding to VEGF-A stimulation in a chemotaxis assay.

Cellular stress testing: Is “ligand-induced chemotaxis of circulating cells” a novel marker with prognostic relevance in the clinical situation?

The novel functional cellular parameter “ligand-induced chemotaxis of circulating cells” requires a prognostic validation in the clinical setting. Moreover, this test deserves to be validated for monitoring therapeutic interventions such as primary and secondary prevention of patients with cardiovascular risk factors. The ligand-stimulated chemotaxis assay has several potential advantages over currently available diagnostic tools: i) It provides additional information currently not assessed using other markers for risk stratification (25). ii) The test assesses a true functional parameter. iii) Monocyte (dys)function potentially reflects endothelial cell (dys)function. iv) The test is a non-invasive simple blood test that allows the assessment of an individual parameter in an objective and patient-independent manner.

The key idea behind the novel approach is to subject freshly isolated cells (monocytes) to a functional test ex vivo. The cell is taken out of the potentially pathological milieu, where it is subject to all potential negative influences that may negatively affect its function, namely hyperglycemia, oxidative stress (smoking, hypercholesterolemia), enhanced shear stress (hypertension) and others. The isolated cells are capable of integrating all negative and positive influences on cell function. These influences affect the outcome of the cellular stress test. One may regard these cells as living biosensors as their functional phenotype is dependent on the negative and positive influences they sense and integrate. There is no reason why the integration of negative and positive influences should differ from one vascular cell type to another one: Monocytes as well as endothelial cells are in direct contact with blood components, they are localized in close proximity to each other and are therefore subjected to the very same negative and positive influences in vivo. In addition,
endothelial cells and monocytes share several signalling pathways involved in migration (own, unpublished data). When subjecting living biosensors to a functional test ex vivo, the functional read-out should not be dependent on surrogate parameters, but on an integrated signal that reflects the functional condition of the isolated cell.

Moreover, based on the availability of a method to quantitatively assess monocyte migration, this concept offers novel perspectives and opportunities for studying the molecular basis of the biological process underlying cellular and vascular dysfunction (bedside-to-bench approach). Currently, the major limitation of quantitative cellular migration analysis is the lack of a robust routine device to assess this parameter in an easy and reliable fashion and within a reasonable period of time. Isolating the relevant cellular subsets and performing the chemotaxis analysis including quantitative evaluation is labour-intensive and time-consuming. It is therefore important to automatize and standardize this test. This would improve its feasibility and acceptance and would reduce the potential variability of the results, as the quality and reproducibility of the chemotaxis analysis is currently dependent on the experience of the laboratory and technician performing the test. Automation of the assessment would reduce the time required for the analysis. In addition, miniaturizing the assay would allow smaller blood volumes to be studied for obtaining reliable functional cellular data. This will open novel perspectives for the routine assessment of individual cellular function. Moreover, the availability of such a test may represent an important addition to our current armamentarium for assessing individual risk and prognosis.

In conclusion, cellular stress testing represents a novel bedside-to-bench approach, in which circulating cells are subjected to functional testing. This provides additional, valuable information on the functional status of vascular cells, leading to the development of novel diagnostic tests, potentially allowing individual risk assessment, determining prognosis and optimizing therapy.

Acknowledgements
I wish to thank my coworkers Frauke S. Czepluch, Marijo Donners and Stefan A. Vöö for critically reading this manuscript.

Definitions
Stress: forced physiologic response using a defined and standardized physiological or supra-physiological stimulus.
Biosensor: Living cells whose functional phenotype is dependent on the negative and positive influences (hyperglycemia, oxidative stress, enhanced shear stress) they sense and integrate.

References