Introduction

Patients subjected to circulatory shock, hypoxia and sepsis may sustain ischemia-reperfusion (I/R)-induced intestinal injury, due to decreased blood flow and oxygen delivery in combination with increased metabolic demand in sepsis (1, 2). This results in (often clinically unrecognized) mucosal dysfunction and in local inflammatory response. With regard to this, the gut plays a pivotal role in the development and maintenance of the systemic inflammatory response syndrome and has been

Enhancement of endogenous fibrinolysis does not reduce local fibrin deposition, but modulates inflammation upon intestinal ischemia and reperfusion

Ivo G. Schoots¹,², Marcel Levi², Arlène K. van Vliet¹, Paul J. Declerck³, Adrie M. Maas¹, Thomas M. van Gulik¹

¹Departments of Surgery, ²Vascular and Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
³Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, University of Leuven, Belgium

Summary

This study investigated the contribution of endogenous suppression of fibrinolysis and increased fibrin deposition to intestinal dysfunction and injury in a rat model of intestinal ischemia/reperfusion (I/R), as fibrinolytic inhibition may lead to thrombotic obstructions that compromise microcirculation and promote intestinal injury. Circulatory fibrinolysis was enhanced by intravenous administration of recombinant tissue plasminogen activator (rt-PA) or by inhibition of PAI-1 by administration of MA-33H1F7. Coagulation and fibrinolysis parameters obtained from portal blood were correlated to fibrin deposition (determined by anti-rat fibrin antibody staining), intestinal function (glucose/water clearance) and intestinal injury (histological evaluation by Park/Chiu score).

Enhanced circulatory fibrinolytic activity, as evidenced by increased portal plasma plasminogen activator activity, elevated fibrin degradation products and decreased levels of PAI-1, did not reduce mucosal fibrin deposition and microthrombosis in postischemic intestinal tissue. Furthermore, rt-PA or anti-PAI-1 antibody administration did not attenuate I/R-induced intestinal injury or dysfunction, as demonstrated by intestinal histopathology scores of 4.8±0.2 and 4.7±0.3 (control I/R group 4.7±0.2) and glucose clearances of 47±6 and 46±9 µL/min · g (control I/R group 30±8 µL/min · g) after 40 minutes of intestinal ischemia and 3 hours of reperfusion, respectively. However, both interventions resulted in decreased levels of interleukin-6, which may indicate fibrin-induced modulation of inflammation. Attempts to enhance the fibrinolytic activity (either by rt-PA or by anti-PAI-1 administration), indicated by increased portal plasma levels of released FDP, failed to decrease mucosal fibrin deposition and to attenuate intestinal I/R injury. Based on our observations and previous reports, the contribution of suppressed endogenous fibrinolysis to microcirculatory fibrin deposition and I/R-injury may be of limited importance.

Keywords

Intestine, ischemia and reperfusion, fibrinolysis, plasminogen activator, plasminogen activator inhibitor

Thromb Haemost 2004; 91: 497–505
Schoots, et al.: Role of fibrinolysis in intestinal I/R injury

Speculated to be “one of the motors of multiple organ injury” (3-5).

An important factor in the development of organ failure is the abundance of intravascular microthrombi associated with local or systemic intravascular coagulation (6). This widespread occurrence of microthrombi has also been demonstrated in ischemic intestinal tissue (7-9). Recently, we demonstrated fibrin deposits and microthrombotic obstructions in the intestinal microcirculation following experimental intestinal I/R, as a result of ongoing activation of coagulation and suppression of endogenous fibrinolysis (10). The endogenous fibrinolytic activity, mediated by endothelial release of tissue-type plasminogen activator (t-PA), was inhibited by the concomitant endothelial or platelet release of plasminogen activator inhibitor (PAI)-1, the physiological, fast-acting inhibitor of t-PA. This hypofibrinolytic state can hypothetically contribute to thrombotic obstruction and may compromise adequate microcirculation, thereby promoting intestinal injury. This led to the hypothesis that “recanalization” of the thrombotic microvasculature by fibrinolysis may attenuate the sequelae of intestinal post-ischemic, reperfusion injury.

Promotion of microvascular fibrinolysis can be achieved by the administration of plasminogen activating drugs, such as streptokinase, recombinant t-PA, or recombinant single-chain urokinase, which all result in plasmin production and, subsequently, enhanced fibrinolytic activation (11). Such thrombolytic treatments have been demonstrated to reduce mortality in patients with acute myocardial infarction (12) and represent a promising treatment strategy in acute mesenteric thromboembolic occlusion (13). Furthermore, administration of t-PA has been shown to reduce endotoxin-induced fibrin deposition and concomitant mortality in rabbits (14-16).

It should be noted, however, that the success of thrombolytic strategies has been restrained by the frequent occurrence of thrombotic reoclusion of initially reperfused vessels. Next to fibrin-fixed thrombin, PAI-1-induced inhibition of endogenous fibrinolysis may play a major role in thrombotic reoclusion (17-21). PAI-1, as a serine protease inhibitor, is present in α-granules in platelets and can be expressed in endothelial cells and in monocytes (22, 23). In previous studies, we have demonstrated that inhibition of PAI-1 activity promotes endogenous fibrinolysis, inhibits thrombus extension and prevents fibrin deposition in experimental models of thrombosis and disseminated intravascular coagulation (24-26).

The aim of the present study was to investigate whether endogenous suppression of fibrinolysis and increased fibrin deposition contribute to intestinal dysfunction and injury in a rat model of intestinal I/R. Enhancement of fibrinolytic activity in the mesenteric circulation was induced by administration of recombinant t-PA. The role of PAI-1 in preventing t-PA-mediated fibrinolysis prompted us to investigate also the effect of inhibition of PAI-1 activity, using an anti-rat PAI-1 monoclonal antibody (MA-33H1F7) (27).

Material and methods

Recombinant tissue plasminogen activator (rt-PA) concentrate (Alteplase) was purchased from Genentech Inc. (San Francisco, CA) and anti-PAI-1 monoclonal antibody (MA)-33H1F7 was produced as described (27). Goat anti-rat fibrin polyclonal antibody (28) was kindly provided by Dr. J.J. Emeis (TNF Prevention and Health, Leiden, The Netherlands). All other reagents were of analytical grade.

Animal model of intestinal I/R

Adult male wistar rats (Charles Rivers, Broekman Instituut BV, Someren, The Netherlands), weighing 300-325 g, were fed standard rat chow (Hope Farms, Woerden, The Netherlands) and water ad libitum. The rats were allowed to acclimatize to our laboratory conditions for at least 4 days and were subjected to a regimen of 12:12 h / day-night cycle in mesh stainless-steel cages at constant temperature (22°C). The protocol was approved by the Animal Ethics Committee of the University of Amsterdam (The Netherlands). All animals were handled in accordance with the guidelines prescribed by the Dutch legislation and the International Guidelines on protection, care and handling of laboratory animals. The last 12 hours prior to the experiments, the animals had no access to solid food, but had free access to water.

Animal model used has been described previously (10). Briefly, under anaesthesia (1-2% isoflurane) and continuous monitoring of mean arterial pressure (90-110 mmHg) and body temperature (37±0.5°C), an intestinal loop of approximately 15 cm (10 cm proximal from the cecum) was isolated and canulated with soft silicon tubes, and connected to a perfusion pump, a heat exchanger and a reservoir to obtain a closed circuit. The reservoir contained freshly made Ringer’s solution consisting of (in mmol/L): 117.5 NaCl; 5.7 KCl; 2.5 CaCl₂; 25.0 NaHCO₃; 1.2 mM MgSO₄; 1.2 NaH₂PO₄; 2.5 CaCl₂ (Sigma-Aldrich Chemie BV, Zwijndrecht, The Netherlands). Glucose (25 mM) was added to this solution, in order to evaluate the absorptive function of the intestinal epithelium.

Intestinal ischemia was induced by temporarily occlusion of the superior mesenteric artery (SMA) and confirmed by immediate blanching of the small intestine and cecum. Restoration of blood flow to the gut after declamping of the SMA was confirmed by returning to its original color. During reperfusion, luminal perfusion (1.0 mL/min) of the isolated intestinal loop was performed with the Ringer-glucose solution and samples from the perfusate (0.25 mL each) were obtained after 1, 2 and 3 hours of reperfusion and stored at –20°C until further analysis. Portal blood samples (1.25 mL each) were collected in sodium-citrate buffer (final citrate concentration 0.32%) and in
EDTA tubes after 5 minutes, and after 1 and 3 hours of reperfusion, were centrifuged at 2,000g at 4°C for 20 minutes and stored at -80°C until further analysis. Rats were sacrificed by bleeding after final blood sampling and subsequent administration of heparin (2,000 IU/kg) to prevent intravascular clotting. Biopsies of the small intestine were collected 5 cm proximal from the isolated rat intestinal loop and were fixed in 10% formaldehyde for histological examination.

Experimental design of intestinal I/R

In total, 54 rats were randomly allocated to one control group (saline) and two experimental groups (rt-PA and anti-PAI-1 monoclonal antibody, respectively), consisting of 18 rats each. rt-PA (1.0 mg/kg of body weight), anti-PAI-1 MA-33H1F7 (1.5 mg/kg) or 0.9% saline was administered intravenously into the penal vein during ischemia, 15 minutes before reperfusion.

In each group, intestinal ischemia and reperfusion was induced by isolating and clamping the SMA with an atraumatic clamp for 0 minutes (sham operation, n = 6), 20 minutes (n = 6) or 40 minutes (n = 6), followed by 3 hours of reperfusion.

Assessment of coagulation and fibrinolysis

Plasma samples in sodium-citrate buffer, stored at -80°C were utilized. Thrombin generation was assessed by measuring the thrombin-antithrombin (TAT) complexes with an enzyme-linked immunosorbent assay (ELISA) kit (Behring, Marburg, Germany). ATIII was measured by an automated amidolytic technique according to methods previously described (29). Fibrin degradation products (D-dimers) were assessed by an ELISA (Asserachrom D-Di, Diagnostica Stago, Asnieres-sur-Seine, France) (30). Plasminogen activator activity (PAA) was measured by an automated amidolytic assay previously described (31). Briefly, 25 µL of plasma was mixed with 0.1 M TrisHCl, pH 7.5, 0.1% (v/v) Tween-80, 0.3 mM S-2251 (Chromogenix, Mölndal, Sweden), 0.13 M plasminogen and 0.12 mg/mL cyanogen bromide-digested fibrinogen fragments of fibrinogen to a final volume of 250 mL. The amount of plasmin formed under these conditions is proportional to the concentration of PAA present, and can be spectrophotometrically detected by conversion of the chromogenic substrate. PAI-1 activity was measured with an amidolytic method previously described (32). Briefly, plasma was incubated with a fixed excess of t-PA (40 IU/mL) for 10 min at room temperature. The residual t-PA activity was determined by incubation with 0.13 µM plasminogen (Chromogenix, Sweden), 0.12 mg/mL cyanogen bromide-digested fibrinogen fragments and 0.1 mM S-2251 (Chromogenix, Sweden). Under these circumstances, the plasmin generated is inversely proportional to the amount of PAI-1 present.

Immunohistochemical assessment of fibrin deposition

Fibrin deposition was detected on formaldehyde-fixed tissue sections using immunohistochemistry according to standard procedures (33). Briefly, paraffin sections of jejunal tissue (4 µm) were deparaffinized and rehydrated through a graded series of xylene-ethanol. Endogenous peroxidase activity was blocked by treatment with 1.5% (v/v) H2O2 in phosphate buffered saline (PBS) for 30 minutes. Non-specific protein binding was blocked using Blocking Agent (Casein Solution, Vector Laboratories, Burlingame, CA). All sections were incubated overnight at 4°C using polyclonal goat anti-rat fibrin antibody (TNF Prevention and Health, Leiden, The Netherlands) (28) diluted in PBS (1:1,600). Immunoreaction was detected using the Vectastain ABC Elite Kit (Vector Laboratories, Burlingame, CA) and staining was developed using 0.5 mg/mL 3,3’-diaminobenzidine (DAB) (Sigma, Zwijndrecht, The Netherlands), 0.02% (v/v) H2O2 in 30 mM imidazole and 1.0 mM EDTA (pH 7.0). The time of development was equal for all the tissues. Finally, sections were counterstained with hematoxylin, dehydrated and mounted. As negative controls, parallel sections consisted of the omission of the primary antibody and yielded no immunohistochemical reaction. Evaluation of fibrin deposition was performed by microscopic examination.

Measurement of cytokines

In EDTA plasma samples, stored at -80°C, levels of tumor necrosis factor-α, cytokine induced neutrophil chemoattractant, interleukin-1β and interleukin-6 were determined with the use of rat-ELISA kits (RnD Systems, Minneapolis, MN).

Histological assessment of intestinal injury

Histological grading of intestinal injury of formaldehyde fixed jejunal tissues, counterstained with haematoxylin and eosin, was performed by two independent, non-informed examiners, using the Park-Chiu classification (34). Briefly, the scores used were 0: normal mucosa, 1: subepithelial space at villus tips, 2: extension of subepithelial space with moderate lifting, 3: massive lifting down sides the villi, some denuded villi, 4: denuded villi, dilated capillaries, 5: disintegration of the lamina propria, 6: crypt layer injury, 7: transmucosal infarction and 8: transmural infarction.

Assessment of intestinal transport

Intestinal water transport (ClH2O) was assumed to be reflected by the clearance of water from the total volume of the perfusion solution in the closed circuit (including the reservoir, connecting tubes and isolated intestinal loop) and was used to estimate net intestinal absorption and secretion. Glucose transport (ClGLUC) was determined to measure the active-transport capacity of the epithelium. The glucose concentration (CGLUC) was determined by a ‘Glucose Assay Reagent’ utilizing the hexoki-
Figure 1: Effects of rt-PA and MA-33H1F7 on intestinal I/R-induced activation of coagulation and fibrinolysis.
Activation of coagulation and suppression of fibrinolysis were determined by the measurement of portal plasma levels of thrombin-antithrombin (TAT)-complexes (A,B), anti-thrombin III (ATIII) (C,D), fibrin degradation products (FDP) (E,F), plasminogen activator activity (PAA) (G,H) and plasminogen activator inhibitor (PAI)-1 (I,J). Animals were intravenously administered saline, rt-PA (1.0 mg/kg of body weight) or anti-PAI-1 MA-33H1F7 (1.5 mg/kg), 15 minutes before reperfusion. Data (n = 6, in each group) are expressed as mean values ± SEM. Portal plasma levels of repeated measurements during 3 hours of reperfusion in saline treated animals subjected to sham operation (—■—), or to 20 minutes (—▲—) or 40 minutes (—●—) of ischemia are depicted in A, C, E, G and I. Portal plasma levels of animals treated with saline (closed bars), rt-PA (crossed bars), or MA-33H1F7 (blocked bars), subjected to 20 minutes or 40 minutes of ischemia after 3 hours of reperfusion are depicted in B, D, F, H and J. *P < .05 compared with the sham-operated group; †P < .05 compared with 20 minutes I/R plus saline group; ‡P < .05 compared with 40 minutes I/R plus saline group.
nase-glucose 6-phosphate dehydrogenase enzymatic assay (Sigma Diagnostics, St. Louis, MO, USA). The transport rate of water and glucose was determined as the clearance from the luminal perfusate per minute per gram intestine and calculated from the formula: Clearance (in µL/g · min) = (C_i*V_i-C_f*V_f)/(0.5*(C_i+C_f)*T*W) in which C is the detectable glucose concentration of the initial solution (i) and final solution (f), V the volume of the same solutions, T the time in minutes (min), and W the weight of the intestinal loop in grams (g).

Statistical analysis
The data analysis was performed using Graphpad Prism version 3.0 (Graphpad Software, Inc) for Windows 95. All quantitative data were presented as mean values ± standard error of the mean (SEM). Statistical analysis for repeated measurements was performed by analysis of variance and subsequent Bonferroni’s post-hoc test. Differences between experimental groups were analyzed by the unpaired student- t and where appropriate by the Mann-Whitney U test. P values <.05 were considered to be statistically significant.

Results

Effects of rt-PA and MA-33H1F7 on intestinal I/R-induced activation of coagulation and fibrinolysis
Intestinal I/R resulted in local intravascular coagulation activation and suppression of fibrinolysis. Thrombin generation and conversion of fibrinogen to fibrin was demonstrated by increase of the portal plasma levels of TAT-complexes and FDP (Fig. 1). During 3 hours of reperfusion this thrombin generation resulted in local consumption of ATIII to 92±1% (P<.001) and 86±1% (P<.001) of baseline values after 20 and 40 minutes of ischemia, respectively, which was associated with a 3-fold and 5-fold rise of TAT-complexes, respectively. The initial rise of plasminogen activating activity after 1 hour of reperfusion, demonstrating local activation of fibrinolysis, was blunted by fibrinolytic inhibition to 91±2% (P<.002) and to 81±2% (P<.001) of baseline levels, 3 hours after 20 and 40 minutes of ischemia, respectively. This decrease of plasminogen activating activity was accompanied by an increase in portal plasma levels of PAI-1, starting at 1 hour of reperfusion and reaching levels of 17±1 IU/mL (P<.001) and 25±2 IU/mL (P<.001) after 20 and 40 minutes ischemia and 3 hours of reperfusion, respectively.

Administration of rt-PA enhanced circulatory plasminogen activator activity (PAA exceeded beyond detection limit) (Fig. 1H). This increased fibrinolytic activity resulted in a 2.5-fold and 4-fold increase of baseline FDP portal plasma levels (272±22 ng/mL) after 20 and 40 minutes of ischemia and 3 hours of reperfusion, respectively (Fig. 1F). Administration of rt-PA eliminated approximately all free active PAI-1 (Fig. 1J).

Administration of anti-PAI-1 monoclonal antibody abolished the I/R-induced suppression of fibrinolysis by decreasing PAI-1 activity resulting in approximately a 2-fold increase of plasminogen activating activity after 20 and 40 minutes of ischemia (Fig. 1H). This increased fibrinolytic activity led to a 3-fold and 4.5-fold rise of baseline FDP portal plasma levels (266±23 ng/mL) after 20 and 40 minutes of ischemia and 3 hours of reperfusion, respectively (Fig. 1F).
Effects of rt-PA and MA-33H1F7 on intestinal I/R-induced fibrin deposition and microvascular thrombosis

Microscopical assessment of intestinal stainings of saline treated rats revealed mucosal fibrin deposits after 20 (data not shown) and 40 minutes of intestinal ischemia (Fig. 2C, 2D) and 3 hours of reperfusion, whereas histological examination of intestinal stainings after sham operation did not reveal any mucosal fibrin deposits (Fig. 2A, 2B).

Administration of rt-PA and anti-PAI-1 antibody had no effect at all on mucosal deposition of fibrin, after 20 and 40 minutes of intestinal ischemia (Fig. 2E-H).

Effects of rt-PA and MA-33H1F7 on intestinal I/R-induced inflammation

Portal plasma levels of tumor necrosis factor-α, cytokine induced neutrophil chemoattractant and interleukin-1β were below the 15 pg/mL detection limit. Increase of IL-6 in sham/saline treated animals during experimental time-course was most likely due to surgery and anesthesia. A similar increase was also demonstrated in sham/rtPA and sham/anti-PAI-1 treated animals (data not shown). Furthermore, this increase did not significantly differ from sham/saline treated animals. After 3 hours of “reperfusion” in sham animals treated with saline, rtPA or anti-PAI-1, basal IL-6 levels (pg/mL) were 77±11, 56±13 and 67±7, respectively.

Portal plasma concentrations of interleukin-6 were significantly higher in rats subjected to 20 (P=.046) and 40 (P=.002) minutes of intestinal ischemia as compared to sham-operated rats after 3 hours of reperfusion (Fig. 3). The increases of portal plasma interleukin-6 after 20 and 40 minutes of ischemia followed by reperfusion were significantly reduced to sham-operated values by rt-PA administration (P=.028 and P=.049, respectively) and anti-PAI-1 antibody administration (P=.022 and P=.010, respectively).

Effects of rt-PA and MA-33H1F7 on I/R-induced intestinal injury and dysfunction

Histological analysis of rat intestinal tissues, subjected to sham operation, or to 20 or 40 minutes of intestinal ischemia, was performed after 3 hours of reperfusion according to the Park-Chiu classification (34). Microscopical assessment of intestinal injury revealed subepithelial spaces in the villus tips with moderate to massive lifting, together with villus denudation in saline treated animals after 20 minutes of ischemia with a mean score of 3.2±0.4 (range 2-4, P=.007) (Fig. 4A). Intestinal injury was increased to disintegration of the lamina propria in most intestinal tissues of saline treated animals after 40 minutes of ischemia, with a mean score of 4.7±0.2 (range 4-5, P=.001); such changes were not observed in sham-operated animals. Neither rt-PA nor anti-PAI-1 monoclonal antibody administration reduced I/R-induced intestinal injury.

Intestinal clearances of glucose and water during 3 hours of reperfusion were significantly and dose-dependently decreased after 20 and 40 minutes of intestinal ischemia in saline treated animals (Figs. 4B, 4C). Administration of rt-PA or anti-PAI-1 antibody did not attenuate I/R-induced intestinal dysfunction.
Discussion

Intestinal I/R-induced endothelial cell injury results in a procoagulant and fibrinolysis-suppressing environment giving rise to fibrin deposition (10, 35, 36), which may further compromise the microcirculation of the intestine and promote necrosis in distal intestinal tissue. Mechanisms that have been incriminated to play a role in the procoagulant response are the upregulation of tissue factor in combination with dysfunctional anticoagulant pathways, along with suppression of fibrinolysis mainly due to increased levels of the inhibitor of fibrinolysis: PAI-1 (37, 38). In the present study, we investigated the relative contribution of suppressed endogenous fibrinolysis to the development of fibrin deposition and microthrombosis following intestinal reperfusion injury (10), by restoring the suppressed fibrinolytic activity either by intravenous administration of rt-PA or by inhibition of PAI-1 by monoclonal antibody 33H1F7.

In saline treated animals, intestinal I/R resulted in inadequate removal of mucosal and submucosal fibrin deposits and microthrombotic obstructions in posts ischemic intestinal tissue. The concomitant suppression of plasminogen activator activity following increased plasma levels of PAI-1 demonstrated dysfunctional fibrinolytic activity. Restoration of the dysfunctional fibrinolytic system by rt-PA administration or PAI-1 inhibition enhanced intravascular fibrinolytic activity, as reflected by elevated plasminogen activating activity and total abolishment of PAI-1 in the mesenteric circulation. Subsequent increased levels of FDP indicated augmented removal of intravascular fibrin in both groups, which is supported by a previous study, in which administration of anti-PAI-1 antibody reduced thrombosis and restored posts ischemic reperfusion in mesenteric arterioles (39). Although adequate intravascular, thrombolytic activity may increase intravascular fibrin removal and may consequently restore reperfusion in arterioles, in the current study mucosal and submucosal fibrin deposition and microthrombosis in combination with continuing activated coagulation in posts ischemic intestinal tissue was not reduced either after rt-PA administration or after PAI-1 inhibition. In addition, the enhanced fibrinolytic activity in our model did not attenuate I/R-induced intestinal injury, as demonstrated by morphological and functional analysis. Posts ischemic intestinal structure and water and glucose clearances were equally affected in saline, rt-PA or anti-

Figure 4: Effects of rt-PA and MA-33H1F7 on I/R-induced intestinal injury and dysfunction. Histological analysis of intestinal tissues was performed after 3 hours of reperfusion and assessed according to the Park-Chiu classification.(34) Intestinal clearances of glucose and water during 3 hours of reperfusion were determined in an intestinal loop of approximately 15 cm. Data of animals treated with saline (closed bars), rt-PA (crossed bars), or MA-33H1F7 (blocked bars) are expressed as means ± SEM (n = 6, in each group). *P<.05 compared with the sham-operated group.
PAI-1 treated animals. Although a hypofibrinolytic state may hypothetically contribute to thrombotic obstruction and may hamper adequate microcirculation thereby promoting distal injury, “recanalization” of the thrombotic microvasculature by fibrinolysis did not attenuate the sequelae of intestinal post-ischemic, reperfusion injury.

Modulation of fibrinolysis was shown to cause similar results in experimental models of acute myocardial ischemia and reperfusion (40, 41). Administration of rt-PA, staphylokinase or streptokinase did not benefit ventricular function and structure in canine models of coronary I/R (40, 41). The results of these studies suggest that fibrin deposition and associated injury is of limited importance for the total amount of necrosis. Consequently, based on these reports and our present observations, it may be suggested that the relative contribution of suppressed endogenous fibrinolysis to microcirculatory fibrin deposition and I/R-injury is of limited importance.

As the inflammatory response plays a pivotal role in I/R injury, inhibition of inflammatory cell recruitment/migration and cytokine release has been demonstrated to reduce I/R-injury. It is therefore noteworthy that, in addition to their effects on local fibrinolytic activity, administration of rt-PA or anti-PAI-1 antibody significantly inhibited the inflammatory response following intestinal I/R, as demonstrated by the reduction of interleukin-6 portal plasma levels to baseline values. Interestingly, these results illustrate the tight cross-talk between coagulation and fibrinolysis on the one hand and activation of inflammation on the other hand (42).

Previous studies have shown that tumor necrosis factor-α and interleukin-1β are pivotal regulators of plasminogen activators and inhibitors (43). Inhibition of these inflammatory mediators by monoclonal antibodies, soluble receptors, or receptor antagonists resulted in an abolishment of endotoxin-induced effects on fibrinolysis (44, 45). Experiments in mice with target-ed disruptions of genes encoding components of the plasmino-gen-plasmin system confirm that fibrinolysis itself may also affect inflammation. Mice with a deficiency of plasminogen activators have more extensive inflammation in various tissues when challenged with endotoxin (46), whereas PAI-1 knockout mice, in contrast to wild-type controls, display a reduction of inflammatory activity (47). It is thought that fibrinolytic activators and inhibitors may modulate the inflammatory response by their effect on inflammatory cell recruitment and migration. In particular the plasminogen activator u-PA and its receptor (u-PAR) play a central role in this respect (48). Taken together, it seems that the fibrinolytic shutdown as occurs during intestinal I/R, may contribute to the inflammatory activity and results in enhanced release of interleukin-6, whereas promotion of endogenous fibrinolysis as achieved in our experiments by administration of r-tPA or inhibition of PAI-1, may modulate this inflammatory activity and result in lower interleukin-6 expression. However, in spite of inflammatory response modulation, administration of r-tPA or inhibition of PAI-1 did not attenuate I/R-induced intestinal injury.

In conclusion, intestinal I/R resulted in considerable derangement of the coagulation and inflammatory system, and compromised the enteric microcirculatory system by widespread deposition of fibrin and microthrombosis. Despite enhancement of fibrinolytic activity, administration of rt-PA or anti-PAI-1 antibody neither increased removal of mucosal and submucosal fibrin deposition nor attenuated intestinal I/R injury. These results suggest a limited role of suppressed fibrinolysis in compromising enteric microcirculation with subsequent deterioration of intestinal function and structure following intestinal I/R.

Acknowledgements
The authors gratefully thank Mrs. A.M. Korteland-Van Male (Laboratory of Paediatrics and Sophia Children’s Hospital, Erasmus MC, Rotterdam, the Netherlands) for providing technical assistance.

References
14. Paloma MJ, Páramo JA, Rocha E. Endotoxin-induced intravascular coagulation in rabbits:

504

34. Park PO, Haglund U, Bulkley GB, et al. The endothelial barrier to transmural ischemia: evidence from the global utilization of streptokinase and tissue plasminogen activator (alteplase) for occluded coronary arteries (GUSTO III) and global use of strategies to open occluded coronary arteries (GUSTO I) and global use of strategies to open occluded coronary arteries (GUSTO III) trials. Circulation 2001; 104: 1239-55.
