Usefulness and Limitations of Animal Models of Venous Thrombosis

On behalf of the Subcommittee on Animal, Cellular, and Molecular Models of Thrombosis and Haemostasis of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis

Marcel Levi¹, Janine Dörfler-Melly¹, ², Gerhard J. Johnson³, Ludovic Drouet⁴, Lina Badimon⁵

¹Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; ²Inselspital Bern, Bern, Switzerland; ³VA Medical Center and University of Minnesota, Minneapolis, USA; ⁴Laboratory of Hematology, Hopital Larboisiere, Paris, France; ⁵Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas, Hospital de la Santa Cruz y San Pablo, Universidad Autónoma de Barcelona, Barcelona, Spain

Introduction

To study the pathogenesis of in vivo thrombus formation and to evaluate novel preventive or therapeutic strategies, animal models of venous thrombosis have been in use for more than 50 years. In the past decades numerous animal models of venous thrombosis have been developed and have been applied for a variety of objectives and mostly without certain predictive value for the relevance to human venous thrombosis. The Subcommittee on Animal, Cellular, and Molecular Models of Thrombosis and Haemostasis of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis decided to systematically review the various animal models of venous thrombosis and to analyze the contribution of these models to the study of the pathogenesis and treatment of venous thrombosis. This manuscript summarizes the results of this analysis and it draws some conclusions on the appropriate use of animal models for venous thrombosis.

General Aim of Animal Models for Venous Thrombosis

The need for in vivo models to study thrombosis and to evaluate interventions that may affect thrombus formation, growth and lysis is obvious. Blood coagulation takes place in an environment of non-anticoagulated blood, in the presence of blood cells and vascular wall components, under flow conditions and in a constantly changing milieu, such as local hypoxia and acidosis. Hence, there is no ex vivo model, however sophisticated, that is able to mimic this complex situation.

Animal models of venous thrombosis may be used for four different reasons: Firstly, animal models may be used to study the pathogenesis of venous thrombosis and to establish factors and/or pathways that play a pivotal role in this pathogenesis. Secondly, experimental models can be applied to be able to accurately determine the in vivo biological effect of an intervention. Hence, the in vivo antithrombotic efficacy or pro-thrombotic effect of compounds with in vitro anticoagulant or procoagulant properties, respectively, may be confirmed. Indeed, not every agent that is able to block coagulation in vitro will have antithrombotic properties in vivo, hence this confirmation may be essential. Thirdly, animal models of venous thrombosis are used to facilitate dose-finding of novel antithrombotic agents. Lastly, animal models are often applied for comparative pharmacology, i.e. to predict a superior clinical antithrombotic efficacy of one agent over the other. In the following we will analyze to what extent animal models of venous thrombosis may be useful for each of these objectives.

Animal Modes of Venous Thrombosis

We have performed a literature search in MEDLINE and EMBASE databases from 1966 until July 1999. Terms that were used for the search were both MESH terms and (part of) the textwords “venous thrombosis”, “vein” adjacent to “thrombosis” or “thrombus”. The search results were then limited to “disease models, animals”, or “animals”. All titles and abstracts of the remaining studies were screened to check whether the study really dealt with an animal model of venous thrombosis. The search was limited to review articles and the references of appropriate reviews were cross-checked for other potentially relevant studies.
Following this strategy a total number of 5746 articles were selected. Fig. 1 shows that during the last 10 years an impressive increase in the number of published studies employing a model for venous thrombosis has occurred. The number of published articles between 1996 and 1999 has increased almost 7-fold as compared with the number of articles between 1975 and 1980. When a selection of the retrieved articles was made by using the subheadings “administration and dosage”, or “therapeutic use”, or “pharmacokinetics” it was clear that the vast majority of studies (91%) concerned any form of pharmacological intervention to prevent or treat venous thrombosis, whereas only a relatively small number of studies addressed the mechanism of thrombus formation or blood coagulation in vivo (Fig. 1).

A large number of different animal species is used to study venous thrombosis. In fact, 18 different animal species were represented in our literature search. The method of thrombus formation is also variable and follows Virchow’s triad, including various means of inducing vascular wall damage, stasis of blood, and local activation of coagulation. Although there is ample variation in these methods, most techniques may be considered as a variation of the Wessler model. It is interesting to note that Wessler developed his model primarily to study the pathogenesis of thrombosis and the effect of procoagulant substances on thrombus growth, whereas since then most investigators have used the model to study the effect of antithrombotic interventions.

Usefulness and Limitations of Venous Thrombosis Models

Animal Models of Venous Thrombosis to Study the (Patho)Physiology of Blood Coagulation In Vivo

Although the published reports in which animal models of venous thrombosis are used to study the (patho)physiology of coagulation in vivo represent a relatively small fraction of all published studies, it is clear that this application of animal models is very useful. There are ample illustrations of the importance of venous thrombosis models, not only as a valuable confirmation of in vitro results but also to yield important observations that might not have been made otherwise. Examples include the role of activated protein C in the prevention of thrombosis, demonstration of the role of factor XI-dependent TAFI activation in thrombolysis in vivo, the important relationship between inflammatory and procoagulant mediators in the development of venous thrombosis, the regulatory role of PAI-1 in thrombolysis and thrombus accretion, and the response of the vessel wall to thrombosis.

Animal Models of Venous Thrombosis to Translate in Vitro Anti- or Procoagulant Effects into In Vivo anti- or prothrombotic Effects

Most agents that have an anticoagulant effect in vitro will show antithrombotic properties in vivo. However, there is sometimes no clear relationship between the potency of the in vitro or ex vivo anticoagulant effect and the antithrombotic efficacy. This may for example be illustrated by the results with low molecular weight heparins, some novel direct thrombin inhibitors or potent antiplatelet agents in the treatment of venous thrombosis. Likewise, procoagulant substances may have a thrombogenic potential, but also here the in vivo effect is not always predictable. Moreover, some agents may have a clear effect on the prolongation of clotting times but have no effect on coagulation in vivo.

Dose-finding Studies in Animal Models of Venous Thrombosis

Dose finding studies in animals may facilitate the assessment of the proper dose of a therapeutic agent in humans. To assess whether dose-finding studies in animal models of venous thrombosis are helpful in determining the dose of antithrombotic agents in humans, we have analyzed all studies containing results of a dose-effect relationship in our literature search. We limited our search to antithrombotic treatment with heparin, low molecular weight heparins, or hirudin, since for these agents the adequate antithrombotic dose in human studies has been assessed thereby allowing us to compare the optimal dose from the animal studies with the optimal dose in humans.

From our analysis it can be concluded that the optimal dose of the compounds in the animal models of venous thrombosis may be significantly different from the ultimately established dose in humans. Interestingly, for this selection of agents it may seem that the optimal dose in animal models of venous thrombosis is always higher (up to a factor 3) than the established dose in humans. Obviously, also other factors may have accounted for the eventual selection of the dose in humans (such as the rate of bleeding complications). On the other hand, bleeding was often taken into account to establish the optimal dose in animal models of venous thrombosis (although the proper assessment of bleeding potential of various agents in animal models is complicated but falls beyond the scope of this article). From the analysis it is also clear that there is a wide variation in the optimal dose of the various agents in the different venous thrombosis models. No systematic relationship between the characteristics of the model or a specific animal species and the sensitivity to any intervention could be established.
However, it seems clear that it is very difficult to use the results from a single dose-finding study in an animal model of venous thrombosis to predict the optimal dose of an antithrombotic compound in humans.

Comparative Pharmacology in Animal Models of Venous Thrombosis

Animal models of venous thrombosis are often used to compare the efficacy of various antithrombotic strategies. However, it is not clear whether the results of such a comparison accurately predict a superior efficacy of the agent in clinical practice. To get an impression of the predictive value of the outcome of comparative pharmacological studies in animal models of venous thrombosis, we have chosen to analyze the results of such studies in two different area’s: (1) the antithrombotic efficacy of low molecular weight heparin or hirudin as compared with unfractionated heparin, and (2) pharmacological interventions to achieve thrombolysis of venous thrombosis. For both subjects adequate data from clinical studies are available to establish the accuracy of the results obtained in animal studies.

The majority of the studies comparing low molecular weight heparin with unfractionated heparin (9 out of 14) showed a superior antithrombotic efficacy of low molecular weight heparin. In the animal studies comparing hirudin with heparin, 9 of 11 studies showed a superior efficacy of hirudin over heparin. We now know from large scale clinical studies and meta-analyses that low molecular weight heparin is as effective as unfractionated heparin in the treatment of venous thrombosis. Initial clinical studies comparing hirudin with heparin in the treatment of venous thrombosis show no benefit of one therapy over the other, although prevention of thrombosis may be more effective with hirudin. Taken together, the results from most of the animal models might have been somewhat too optimistic.

Studies comparing the efficacy of various thrombolytic agents on lysis of venous thrombosis in animal models show conflicting results (e.g. t-PA induces a better antithrombotic effect and less bleeding than streptokinase) which are also not in agreement with subsequent clinical observations. Also observations of enhanced lysis of venous thrombosis with low molecular weight heparin could not be confirmed in clinical studies.

Conclusion

Animal models of venous thrombosis appear to be indispensable to advance our knowledge on venous thrombosis and the optimal management of this disease. Animal models for venous thrombosis appear to be particularly useful for studying the (patho)physiology of blood coagulation *in vivo* and the pathogenesis of venous thrombosis. Models also serve an important role in the assessment of the *in vivo* antithrombotic effect of novel anticoagulant agents. Dose-finding studies and studies comparing the efficacy of different antithrombotic strategies in animal models of venous thrombosis should be considered with caution, since results may vary significantly and the outcome of these studies may considerably differ from the ultimate efficacy in humans. It might at least be advisable to test antithrombotic strategies in different models and different species before drawing any conclusion on its (relative) efficacy as an antithrombotic agent.