Dear Sir,

Recent reports have identified an association between the presence of the factor V Leiden allele and spontaneous fetal loss and preeclampsia (1-3). In addition, the 5, 10 methylentetrahydrofolate reductase (MTHFR) gene has also been found to be associated with early fetal loss and pre-eclampsia particularly when present in the homozgyous form or in conjunction with the presence of the factor V Leiden allele (3). The prothrombin 20210A gene mutation is associated with increased levels of plasma prothrombin and an increased risk for venous thrombosis and arterial disease but, to date, has not been investigated in high risk pregnancies (4, 5). It is generally known that underlying maternal hypercoagulability can be a significant risk factor for complications of pregnancy such as maternal deep venous thrombosis and pulmonary embolism, pre-eclampsia, spontaneous fetal loss, and intrauterine growth retardation (IUGR) (6-11). Indeed, the effects of the cumulative number and severity of placental lesions including vascular infarcts associated with placental venous thrombosis have been shown to be significant in the etiology of the IUGR pregnancy (6).

While the hemodynamic balance between maternal and fetal circulation is a critical component of the normal fetal development and pregnancy, few studies focus attention to the fetal circulatory contribution to this process. It is known that most of the coagulation factors (factors II, V, VII, VIII, IX, X, XI, XII, prekallikrein, high molecular weight kininogen and fibrinogen) are at low levels in the fetus, particularly prior to gestational week thirty four (12). Only factors V and VIII reach adult levels at birth (12). In addition, however, low levels of antithrombin III, protein S, protein C and tissue factor pathway inhibitor are present in the fetal circulation (12). Wilcox et al. have shown no overall difference between activated partial thromboplastin time, antithrombin III activity, fibrinopeptide A or thrombin-antithrombin complex concentrations between fetuses with placental insufficiency and those with no placental disease in Doppler defined umbilical placental insufficiency (13).

With the advent of polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) genotyping assays for the factor V Leiden allele, the prothrombin 20210A mutation and the MTHFR C677T gene mutations, we now have the capability to easily compare the prevalence of these mutations in our IUGR population with our control populations (3).

Unfortunately, maternal DNA was unavailable for analysis. Interestingly, the factor V Leiden allele and the prothrombin 20210A gene mutation was identified in none (0/35) of the IUGR placentas. (Appropriate positive control samples were included to demonstrate the adequacy of the assay condition employed). These alleles are present in our population in 7.9% (factor V Leiden) and 2.0% (prothrombin 20210A) of our non-IUGR population (healthy blood donors and unselected surgical patients (17), and unpublished observations).

The MTHFR C677T gene mutation was present in these IUGR placental samples at relative frequencies (25.7% wild type, 54.3% heterozygous, 20% homozygous) similar to that of other reported studies previously identified with IUGR through antenatal ultrasound examination were considered for inclusion in this study. Estimated fetal weights were calculated using Hadlock’s formula (14) and IUGR was defined by an estimated fetal weight of less than the tenth percentile for the gestational age. Placental tissue, harvested from IUGR pregnancies within 30 min of delivery, was collected from the region just below the chorionic plate to ensure adequate fetal component sampling and archived at –70°C. For this study, chromosomal DNA was isolated and purified using the PureGene DNA Isolation Kit (Gentra Systems, Minneapolis, MN). We performed PCR-RFLP genotyping analysis for the factor V Leiden allele, the prothrombin 20210A gene mutation and the MTHFR C677T gene mutation (as previously described) on chromosomal DNA obtained from the 35 IUGR placenta (4, 15, 16). Unfortunately, maternal DNA was unavailable for analysis.

These results suggest that there is no significant fetal contribution to the thrombotic nature of IUGR placental tissue (as it relates to these specific gene mutations) and that the three gene mutations presented here may manifest their greatest impact in IUGR pregnancies through the maternal component. Further studies are needed to determine the clinical impact that genotypic analysis of these genes may have in IUGR pregnancies.

Jeffrey D. Wisotzkey1, Philip Bayliss2,3, Elizabeth Rutherford2, Ted Bell1.
From the Departments of Research1 and Obstetrics and Gynecology2, Division of Maternal Fetal Medicine1, York Hospital, York, PA, USA

Acknowledgments
This work was supported in part by grants from the George L. Laverty Foundation and the Emig Research Center of York Hospital.

References
3. Grandone E, Margaglione M, Colaizzo D, Cappucci G, Paladini D, Marti-
nelli P, Montanaro S, Favone G, Di Minno G. Factor V Leiden, C>T
MHFR polymorphism and genetic susceptibility to preeclampsia.

4. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic
variation in the 3' untranslated region of the prothrombin gene is associated
with elevated plasma prothrombin levels and an increase in venous thrombo-

5. Arruda VR, Annichino-Bizzacchi JM, Goncalves MS, Costa FF. Preva-
ience of the prothrombin gene variant (nt20210A) in venous thrombosis and

6. Salafia CM, Minior VK, Pezzullo JC, Popek EJ, Rosenkrantz TS, Vintzileos
AM. Intrauterine growth restriction in infants of less than thirty two week's

7. Dekker GA, de Vries JIP, Dolleitzsch PM, Huijgens PC, von Blomberg
BME, Jacobs C, van Geijn HP. Underlying disorders associated with severe

8. Salafia CM, Pezzullo JC, Lopez-Zeno JA, Simmons S, Minior VK,
Vintzileos AM. Placental pathologic features of preterm preeclampsia. Am

BM, Goldhaber SZ. Pulmonary embolism and deep venous thrombosis
during pregnancy or oral contraceptive use: prevalence of factor V Leiden.

10. Syverson CJ, Chavkin W, Atrash HK, Rochat RW, Sharp ES, King EG.
Pregnancy related mortality in New York City, 1980 to 1984: causes of
death and associated risk factors. Am J Obstet Gynecol 1991; 164:
603-8.

Evolution of blood coagulation activators and inhibitors in the healthy

13. Wilcox GR, Trudinger BJ, Exner T. The coagulation system in placental
100: 1101-6.

14. Hadlock FP, Harrist RB, Sharma RS. Estimating fetal weight with the use
of head, body, and femur measurements: A prospective study. Am J Obstet

detection of a common mutation in coagulation factor V causing thrombo-
sis via hereditary resistance to activated protein C. Diagn Mol Pathol 1995;

16. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Mathews RG,
A candidate genetic risk factor for vascular disease: a common mutation in

17. Burick A, Witoszkey JD, Najariat MP, Monks JS, Rhoads JE. The role of
preoperative factor V Leiden screening in different geographic populations.

Received July 3, 1998 Accepted January 22, 1999

Oral Contraceptive Users and Screening of Factor V Leiden

Dear Sir,

Resistance to activated protein C (APCr), due to a factor V mole-
cular anomaly (factor V Leiden), is the most common inherited risk
factor involved in venous thrombosis, and is present in about 5% of the
healthy Caucasian population (1). On the other hand, recently published
studies show the increased risk of venous thromboembolism among
users of different types of combined oral contraceptives (OC) (2, 3).
When these two thrombotic risk factors, factor V Leiden and OC:
coincide, the thromboembolic risk increases substantially (4). Bloemerkamp et al. (5) reported that the risk for carriers of factor V
Leiden mutation who use desogestrel-containing OC, increases 50-fold
as compared with non carrier users. For this reason, some authors
have raised the question whether it would be reasonable to perform
a general screening for factor V Leiden before oral contraception (6, 7).
One of the arguments against screening for factor V Leiden, to
avoid secondary vein thrombosis in women taking OC, is the number
of patients this would involve (6) and the corresponding economic cost
(8), as much as $ 441,800 per avoided thrombosis, according to some
reports (8).

In our opinion, a correct estimate of the cost of this screening, in
women using OC, should be based on the following data: 1) the yearly
incidence of deep vein thrombosis in healthy women during their
fertile years: between 0.8 (9) and 2 per 10,000 (7); 2) the prevalence of
factor V Leiden in the normal Caucasian population, about 5%; 3) the
increase in thrombotic risk in factor V Leiden carriers who also take
OC: between 30 (4, 9) and 50 (5) times the risk of the normal popula-
tion; 4) the sensitivity and specificity of the coagulation test for the
detection of a common mutation in coagulation factor V causing thrombo-
sis via hereditary resistance to activated protein C. Diagn Mol Pathol 1995;

Frost P, Blom HJ, Milos R, Goyette P, Sheppard CA, Mathews RG,
A candidate genetic risk factor for vascular disease: a common mutation in

Burick A, Witoszkey JD, Najariat MP, Monks JS, Rhoads JE. The role of
preoperative factor V Leiden screening in different geographic populations.

Correspondence to: Justo Aznar, MD PhD, Department of Clinical Patho-

logy, University Hospital “La Fe”. Avda. Campanar 21, 46009 Valencia,
Spain – Tel.: 34 96 386 2417; FAX Number: 34 96 386 8789

845

Letters to the Editor

Downloaded from www.thrombosis-online.com on 2018-04-14 | ID: 1001066444 | IP: 54.70.40.11
For personal or educational use only. No other uses without permission. All rights reserved.